首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitous in the environment and generally considered to be a saprophyte, but it is also an important opportunistic human pathogen. Pseudomonas aeruginosa elaborates a variety of virulence factors, one of which is lipopolysaccharide (LPS). LPS of P. aeruginosa is composed of three distinct regions: lipid A, core oligosaccharide (OS), and the long-chain O antigen. The core OS of P. aeruginosa is composed of L-glycero-D-manno-heptose, 3-deoxy-D-manno-oct-2-ulosonic acid, D-galactosamine, D-glucose, and L-rhamnose. Noncarbohydrate substituents are also found in the core OS including phosphate, 2-aminoethyl (di)phosphate, acetyl, alanyl and carbamoyl groups. Pseudomonas aeruginosa simultaneously synthesizes two core glycoforms, namely, capped and uncapped core. The capped core is covalently attached to an O antigen, whereas the uncapped core is devoid of O antigen. Although the core of P. aeruginosa LPS is relatively conserved, strain-to-strain variability of its structure exists. This includes phosphorylation pattern, the level of O-acetylation, and the presence or absence of a fourth glucose residue at the distal end of the uncapped core. A number of studies have been reported on the structures of unique truncated core OS with unusual modifications. This mini-review summarizes the diversity of P. aeruginosa complete and truncated core OS structures published over the past fifteen years  相似文献   

3.
Previous structural studies in our laboratory on lipopolysaccharide derived core oligosaccharide had identified a conserved inner core structure in several strains of the veterinary pathogens Mannheimia haemolytica, Actinobacillus pleuropneumoniae and Pasteurella multocida. In this study we describe the elucidation of the core oligosaccharide structure of two strains from M. haemolytica serotype 2. Structural information was established by a combination of monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure for the core oligosaccharide was determined on the basis of the combined data from these experiments:The structural analyses revealed that the conserved inner core structure was maintained in this serotype, with only the terminal β-galactose residue of serotype 1 absent.  相似文献   

4.
5.
The surface array protein (SAP) of Campylobacter fetus strain TK is encoded by seven homologous sapA genes clustered on the chromosomal DNA. The spontaneously arising variant strain TK(SAP) produces no SAP and carries an approximately 10-kb chromosomal deletion. To elucidate the mechanism underlying the loss of SAP synthesis, we analyzed the region containing the sapA homologues and the deletion. We constructed a physical map of the sapA cluster region by aligning the clones that contain sapA homologues. These analyses demonstrated that all sapA homologues were located within a limited region of about 50 kb of chromosomal DNA of strain TK. The TK(SAP) deletion was located within this cluster and was 13.3 kb in size. The deletion occurred between two sapA homologues and resulted in the formation of a chimeric sapA homologue in the variant strain. Sequence analysis of the upstream regions and the conserved regions of all sapA homologues revealed a high degree of similarity. However, only one sapA homologue contained a putative promoter sequence. This promoter sequence was located in the deleted region. Thus, the deletion of the promoter appears to be responsible for the loss of SAP expression in TK(SAP). Received: 17 May 1996 / Accepted: 6 December 1996  相似文献   

6.
7.
8.
The antibacterial and antibiofilm activities of two new ruthenium complexes against E. coli, S. aureus, P. aeruginosa PAO1 (laboratory strain) and P. aeruginosa LES B58 (clinical strain) were evaluated. Complexes, mer‐[RuIII(2‐bimc)3] ? H2O ( 1 ) and cis‐[RuIVCl2(2,3‐pydcH)2] ? 4H2O ( 2 ), were obtained using aromatic carboxylic acid ligands, namely, 1H‐benzimidazole‐2‐carboxylic acid (2‐bimcH) and pyridine‐2,3‐dicarboxylic acid (2,3‐pydcH2). Compounds were physicochemically characterized using X‐ray diffraction, Hirshfeld surface analysis, IR and UV/VIS spectroscopies, as well as magnetic and electrochemical measurements. Structural characterization revealed that Ru(III) and Ru(IV) ions in the complexes adopt a distorted octahedral geometry. The intermolecular classical and weak hydrogen bonds, and π???π contacts significantly contribute to structure stabilization, leading to the formation of a supramolecular assembly. Biological studies have shown that the Ru complexes inhibit the growth of bacteria and biofilm formation by the tested strains and the complexes seem to be a potential as antimicrobial agents.  相似文献   

9.
Pseudomonas aeruginosa rugose small-colony variants (RSCVs) are frequently isolated from chronic infections, yet, they are rarely reported in environmental isolates. Here, during the comparative genomic analysis of two P. aeruginosa strains isolated from crude oil, we discovered a spontaneous in-frame deletion, wspAΔ280–307, which led to hyper-biofilm and RSCV phenotypes. WspA is a homologue of methyl-accepting chemotaxis proteins (MCPs) that senses surfaces to regulate biofilm formation by stimulating cyclic-di-guanosine monophosphate (c-di-GMP) synthesis through the Wsp system. However, the methylation sites of WspA have never been identified. In this study, we identified E280 and E294 of WspA as methylation sites. The wspAΔ280–307 mutation enabled the Wsp system to lock into a constitutively active state that is independent of regulation by methylation. The result is an enhanced production of c-di-GMP. Sequence alignment revealed three conserved repeat sequences within the amino acid residues 280–313 (aa280–313) region of WspA homologues, suggesting that a spontaneous deletion within this DNA encoding region was likely a result of intragenic recombination and that similar mutations might occur in several related bacterial genera. Our results provide a plausible explanation for the selection of RSCVs and a mechanism to confer a competitive advantage for P. aeruginosa in a crude-oil environment.  相似文献   

10.
Uncoupled enzyme IIGlc of the phosphoenolpyruvate (PEP): glucose phosphotransferase system (PTS) in Salmonella typhimurium is able to catalyze glucose transport in the absence of PEP-dependent phosphorylation. We have studied the energetics of glucose uptake catalyzed by this uncoupled enzyme IIGlc. The molar growth yields on glucose of two strains cultured anaerobically in glucose-limited chemostat-and batch cultures were compared. Strain PP 799 transported and phosphorylated glucose via an intact PTS, while strain PP 952 took up glucose exclusively via uncoupled enzyme IIGlc, followed by ATP-dependent phosphorylation by glucokinase. Thus the strains were isogenic except for the mode of uptake and phosphorylation of the growth substrate. PP 799 and PP 952 exhibited similar Y Glc values. Assuming equal Y ATP values for both strains this result indicated that there were no energetic demands for glucose uptake via uncoupled enzyme IIGlc.Abbreviations PTS phosphoenolpyruvate: carbohydrate phosphotransferase system - HPr histidine-containing phosphocarrier protein - GalP galactose permease  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic multi‐drug resistant pathogen implicated as a causative agent in nosocomial and community acquired bacterial infections. The gene encoding prolyl‐tRNA synthetase (ProRS) from P. aeruginosa was overexpressed in Escherichia coli and the resulting protein was characterized. ProRS was kinetically evaluated and the KM values for interactions with ATP, proline, and tRNA were 154, 122, and 5.5 μM, respectively. The turn‐over numbers, kcatobs, for interactions with these substrates were calculated to be 5.5, 6.3, and 0.2 s?1, respectively. The crystal structure of the α2 form of P. aeruginosa ProRS was solved to 2.60 Å resolution. The amino acid sequence and X‐ray crystal structure of P. aeruginosa ProRS was analyzed and compared with homologs in which the crystal structures have been solved. The amino acids that interact with ATP and proline are well conserved in the active site region and overlay of the crystal structure with ProRS homologs conforms to a similar overall three‐dimensional structure. ProRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen 890 chemical compounds, resulting in the identification of two inhibitory compounds, BT06A02 and BT07H05. This work confirms the utility of a screening system based on the functionality of ProRS from P. aeruginosa.  相似文献   

12.
Aims: Cationic steroids like CSA‐13 have been designed by analogy with antimicrobial cationic peptides and have bactericidal properties. The purpose of this work was to evaluate the effect of a low concentration (1 mg l?1) of CSA‐13 on the formation of a biofilm by eight strains of Pseudomonas aeruginosa (four mucoid and four nonmucoid strains) on an inert surface. Method and Results: The biofilm formation was measured with the Crystal Violet method. CSA‐13 inhibited the formation of a biofilm by three strains. The zeta potential varied among the strains. The inhibition by the cationic steroid analogue affected the populations of bacteria with the lowest zeta potential. P. aeruginosa bound a fluorescent, more hydrophobic analogue of CSA‐13 but there was no correlation between this binding and the inhibition by CSA‐13 of biofilm formation. The interaction of CSA‐13 with bacteria did not modify their ability to produce rhamnolipids. Conclusions: A low concentration of CSA‐13 inhibits the formation of a biofilm by P. aeruginosa through electrostatic interactions and without affecting the production of rhamnolipids. Significance and Impact of the Study: A low, nontoxic concentration of CSA‐13 might be beneficial for the prevention of biofilm formation.  相似文献   

13.
14.
15.
Agmatine is the decarboxylation product of arginine and a number of bacteria have devoted enzymatic pathways for its metabolism. Pseudomonas aeruginosa harbours the aguBA operon that metabolizes agmatine to putrescine, which can be subsequently converted into other polyamines or shunted into the TCA cycle for energy production. We discovered an alternate agmatine operon in the P. aeruginosa strain PA14 named agu2ABCA′ that contains two genes for agmatine deiminases (agu2A and agu2A′). This operon was found to be present in 25% of clinical P. aeruginosa isolates. Agu2A′ contains a twin‐arginine translocation signal at its N‐terminus and site‐directed mutagenesis and cell fractionation experiments confirmed this protein is secreted to the periplasm. Analysis of the agu2ABCA′ promoter demonstrates that agmatine induces expression of the operon during the stationary phase of growth and during biofilm growth and agu2ABCA′ provides only weak complementation of aguBA, which is induced during log phase. Biofilm assays of mutants of all three agmatine deiminase genes in PA14 revealed that deletion of agu2ABCA′, specifically its secreted product Agu2A′, reduces biofilm production of PA14 following addition of exogenous agmatine. Together, these findings reveal a novel role for the agu2ABCA′ operon in the biofilm development of P. aeruginosa.  相似文献   

16.
Soluble glycerol-3-phosphate dehydrogenase 1 (GPD1, EC 1.1.1.8) plays important roles in the synthesis of triacylglycerol and in the glycerol-3-phosphate shutter. Though GPD1 is expressed in most adult tissues, little is known about the regulation of its expression. In this study, we analyzed the characters, organization and core region of the promoter of pig GPD1 gene by in silico analysis and activity detection of deletion mutants. We also identified and testified the negative regulation effect of C/EBP β on pig GPD1 gene by Chromatin immunoprecipitation (ChIP) assay and over-expression experiments in cultured pig kidney cells. Compared to that of human, pig GPD1 gene promoter has three conserved regions and one deletion region. In silico analysis indicated that pig GPD1 promoter was TATA-less with at least 3 CpG islands of over 200 bp in length and over 60% in GC content. The activity detection of deletion mutants suggested that the essential elements required for the optimal promoter activity scatter in the promoter region, while the core promoter region was from -422 bp to -1 bp. Chromatin immunoprecipitation (ChIP) assay results indicated that C/EBP β had plenty of binding sites in pig GPD1 promoter with the common cis-element (5’- TKNNGCAAK -3’). The over-expression examination of C/EBP β showed that the expression of GPD1 was negatively regulated by C/EBP β in pig kidney cells. Overall, our study revealed that the pig GPD1 promoter is a TATA-less promoter, and in promoter region, the binding sites of C/EBP β share common motif of (5’-TKNNGCAAK -3’). We also showed that pig GPD1 gene is regulated negatively by C/EBP β in cultured kidney cells.  相似文献   

17.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

18.
The cyanobacterium Microcystis aeruginosa causes most of the harmful toxic blooms in freshwater ecosystems. Some strains of M. aeruginosa tolerate low‐medium levels of salinity, and because salinization of freshwater aquatic systems is increasing worldwide it is relevant to know what adaptive mechanisms allow tolerance to salinity. The mechanisms involved in the adaptation of M. aeruginosa to salinity (acclimation vs. genetic adaptation) were tested by a fluctuation analysis design, and then the maximum capacity of adaptation to salinity was studied by a ratchet protocol experiment. Whereas a dose of 10 g NaCl L?1 completely inhibited the growth of M. aeruginosa, salinity‐resistant genetic variants, capable of tolerating up to 14 g NaCl L?1, were isolated in the fluctuation analysis experiment. The salinity‐resistant cells arose by spontaneous mutations at a rate of 7.3 × 10?7 mutants per cell division. We observed with the ratchet protocol that three independent culture populations of M. aeruginosa were able to adapt to up to 15.1 g L?1 of NaCl, suggesting that successive mutation‐selection processes can enhance the highest salinity level to which M. aeruginosa cells can initially adapt. We propose that increasing salinity in water reservoirs could lead to the selection of salinity‐resistant mutants of M. aeruginosa.  相似文献   

19.
Comparative studies on the virulence of 22 clinical isolates of Pseudomonas aeruginosa were made by means of intraperitoneal inoculation in mice. The LD50 values of these strains for mice ranged from 105 0 to 107.5 viable cells per mouse and the average was 106.6. The virulence of certain strains was significantly enhanced when these strains were inoculated mixed with mucin. The highly virulent strains were often found among the strains which were serologically untypable though no relationship could be found between the virulence of test strains and their other biological characteristics such as pigments, hemolysins and extracellular enzymes. The facts suggest that pigments and extracellular enzymes play no important role in the pathogenicity of P. aeruginosa for mice. Moreover, no difference was seen on virulence among the strains isolated from the patients and healthy carriers. The susceptibility of ICR, ddN and CF#1 mice for P. aeruginosa was investigated. There was no clear difference in susceptibilities to P. aeruginosa infection.  相似文献   

20.
BRCA1 plays a central role in DNA repair. Although N‐terminal RING and C‐terminal BRCT domains are studied well, the functions of the central region of BRCA1 are poorly characterized. Here, we report a structural and functional analysis of BRCA1 alleles and functional human BRCA1 in chicken B‐lymphocyte cell line DT40. The combination of “homologous recombineering” and “RT‐cassette” enables modifications of chicken BRCA1 gene in Escherichia coli. Mutant BRCA1 knock‐in DT40 cell lines were generated using BRCA1 mutation constructs by homologous recombination with a targeting efficiency of up to 100%. Our study demonstrated that deletion of motifs 2–9 BRCA1Δ/Δ181‐1415 (Caenorhabditis elegans BRCA1 mimic) or deletion of motif 1 BRCA1Δ/Δ126‐136 decreased cell viability following cisplatin treatment. Furthermore, deletion of motifs 5 and 6 BRCA1Δ/Δ525‐881 within DNA‐binding region, even the conserved 7‐amino acid deletion BRCA1Δ/Δ872‐878 within motif 6, caused a decreased cell viability upon cisplatin treatment. Surprisingly, human BRCA1 is functional in DT40 cells as indicated by DNA damage‐induced Rad 51 foci formation in human BRCA1 knock‐in DT40 cells. These results demonstrate that those conserved motifs within the central region are essential for DNA repair functions of BRCA1. These findings provide a valuable tool for the development of new therapeutic modalities of breast cancer linked to BRCA1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号