首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autotransporter (AT) proteins are a large and diverse family of extracellular virulence proteins from Gram-negative bacteria, characterized by a central β-helix domain within the mature virulence protein. It is not clear how these proteins cross the outer membrane (OM) quickly and efficiently, without assistance from an external energy source such as ATP or a proton gradient. Conflicting results in the literature have led to several proposed mechanisms for AT OM secretion, including a concerted process, or vectorial secretion with different directionalities. We introduced pairs of cysteine residues into the passenger sequence of pertactin, an AT virulence protein from Bordetella pertussis , and show that OM secretion of the passenger domain stalls due to the formation of a disulphide bond. We further show that the C-terminus of the pertactin passenger domain β-helix crosses the OM first, followed by the N-terminal portions of the virulence protein. In vivo proteolytic digestion shows that the C-terminus is exposed to the extracellular milieu during stalling, and forms stable structure. These AT secretion and folding features can potentially facilitate efficient secretion.  相似文献   

2.
Variations in the intein-mediated protein splicing mechanism are becoming more apparent as polymorphisms in conserved catalytic residues are identified. The conserved Ser or Cys at the intein N-terminus and the conserved intein penultimate His are absent in the KlbA family of inteins. These inteins were predicted to be inactive, since an N-terminal Ala cannot perform the initial reaction of the standard protein splicing pathway to yield the requisite N-terminal splice junction (thio)ester. Despite the presence of an N-terminal Ala and a penultimate Ser, the KlbA inteins splice efficiently using an alternative protein splicing mechanism. In this non-canonical pathway, the C-extein nucleophile attacks a peptide bond at the N-terminal splice junction rather than a (thio)ester bond, alleviating the need to form the initial (thio)ester at the N-terminal splice junction. The remainder of the two pathways is the same: branch resolution by Asn cyclization is followed by an acyl rearrangement to form a native peptide bond between the ligated exteins.  相似文献   

3.
The influenza A M2 protein is a 97‐residue integral membrane protein involved in viral budding and proton conductance. Although crystal and NMR structures exist of truncated constructs of the protein, there is disagreement between models and only limited structural data are available for the full‐length protein. Here, the structure of the C‐terminal juxtamembrane region (sites 50–60) is investigated in the full‐length M2 protein using site‐directed spin‐labeling electron paramagnetic resonance (EPR) spectroscopy in lipid bilayers. Sites 50–60 were chosen for study because this region has been shown to be critical to the role the M2 protein plays in viral budding. Continuous wave EPR spectra and power saturation data in the presence of paramagnetic membrane soluble oxygen are consistent with a membrane surface associated amphipathic helix. Comparison between data from the C‐terminal juxtamembrane region in full‐length M2 protein with data from a truncated M2 construct demonstrates that the line shapes and oxygen accessibilities are remarkably similar between the full‐length and truncated form of the protein.  相似文献   

4.
Dense‐core vesicles (DCVs) are secretory organelles that store and release modulatory neurotransmitters from neurons and endocrine cells. Recently, the conserved coiled‐coil protein CCCP‐1 was identified as a component of the DCV biogenesis pathway in the nematode Caenorhabditis elegans. CCCP‐1 binds the small GTPase RAB‐2 and colocalizes with it at the trans‐Golgi. Here, we report a structure‐function analysis of CCCP‐1 to identify domains of the protein important for its localization, binding to RAB‐2, and function in DCV biogenesis. We find that the CCCP‐1 C‐terminal domain (CC3) has multiple activities. CC3 is necessary and sufficient for CCCP‐1 localization and for binding to RAB‐2, and is required for the function of CCCP‐1 in DCV biogenesis. In addition, CCCP‐1 binds membranes directly through its CC3 domain, indicating that CC3 may comprise a previously uncharacterized lipid‐binding motif. We conclude that CCCP‐1 is a coiled‐coil protein that binds an activated Rab and localizes to the Golgi via its C‐terminus, properties similar to members of the golgin family of proteins. CCCP‐1 also shares biophysical features with golgins; it has an elongated shape and forms oligomers.   相似文献   

5.
Obtaining high yields of membrane proteins necessary to perform detailed structural study is difficult due to poor solubility and variability in yields from heterologous expression systems. To address this issue, an Escherichia coli‐based membrane protein overexpression system utilizing an engineered bacterial outer membrane protein F (pOmpF) fusion has been developed. Full‐length human receptor activity‐modifying protein 1 (RAMP1) was expressed using pOmpF, solubilized in FC15 and purified to homogeneity. Using circular dichroism and fluorescence spectroscopy, purified full‐length RAMP1 is composed of approximately 90% α‐helix, and retains its solubility and structure in FC15 over a wide range of temperatures (20–60°C). Thus, our approach provides a useful, complementary approach to achieve high‐yield, full‐length membrane protein overexpression for biophysical studies.  相似文献   

6.
InvA is a prominent inner‐membrane component of the Salmonella type III secretion system (T3SS) apparatus, which is responsible for regulating virulence protein export in pathogenic bacteria. InvA is made up of an N‐terminal integral membrane domain and a C‐terminal cytoplasmic domain that is proposed to form part of a docking platform for the soluble export apparatus proteins notably the T3SS ATPase InvC. Here, we report the novel crystal structure of the C‐terminal domain of Salmonella InvA which shows a compact structure composed of four subdomains. The overall structure is unique although the first and second subdomains exhibit structural similarity to the peripheral stalk of the A/V‐type ATPase and a ring building motif found in other T3SS proteins respectively.  相似文献   

7.
The invasive phenotype of Shigella flexneri is conferred by a 220 kb virulence plasmid, pWR100, that encodes both the Ipa proteins, which are involved in the entry process, and factors which are required for the export and correct localization of the Ipa proteins. We have characterized the mxiD gene, whose expression, like that of the ipa operon, is regulated by temperature. After inactivation of mxiD, the mutant strain was unable to invade HeLa cells and to provoke keratoconjunctivitis in guinea-pigs. Analysis of culture supernatants indicated that wild-type S. flexneri secretes about nine polypeptides and that secretion of several of these, including IpaA, IpaB, and IpaC, is abolished in the mxiD mutant. Examination of the membrane proteins of the wild-type and mxiD strains suggested that MxiD is an outer membrane protein. Amino acid sequence comparison revealed that MxiD is homologous to the YscC protein of Yersinia enterocolitica and to the C-terminal region of the PulD protein of Klebsiella pneumoniae. Both YscC and PulD are involved in extracellular protein secretion. These results indicate that MxiD is an essential component of the Ipa secretion apparatus.  相似文献   

8.
DKP formation is a serious side reaction during the solid‐phase synthesis of peptide acids containing either Pro or Gly at the C‐terminus. This side reaction not only leads to a lower overall yield, but also to the presence in the reaction crude of several deletion peptides lacking the first amino acids. For the preparation of protected peptides using the Fmoc/tBu strategy, the use of a ClTrt‐Cl‐resin with a limited incorporation of the C‐terminal amino acid is the method of choice. The use of resins with higher loading levels leads to more impure peptide crudes. The use of HPLC‐ESMS is a useful method for analysing complex samples, such as those formed when C‐terminal Pro peptides are prepared by non‐optimized solid‐phase strategies. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The understanding of the biogenesis of the outer membrane of Gram‐negative bacteria is of critical importance due to the emergence of bacteria that are becoming resistant to available antibiotics. A problem that is most serious for Gram‐negative bacteria, with essentially few antibiotics under development or likely to be available for clinical use in the near future. The understanding of the Gram‐negative bacterial outer membrane is therefore critical to developing new antimicrobial agents, as this membrane makes direct contact with the external milieu, and the proteins present within this membrane are the instruments of microbial warfare, playing key roles in microbial pathogenesis, virulence and multidrug resistance. To date, a single outer membrane complex has been identified as essential for the folding and insertion of proteins into the outer membrane, this is the β‐barrel assembly machine (BAM) complex, which in some cases is supplemented by the Translocation and Assembly Module (TAM). In this issue of Molecular Microbiology, Dunstan et al. have identified a novel pathway for the insertion of a subset of integral membrane proteins into the Gram‐negative outer membrane that is independent of the BAM complex and TAM.  相似文献   

10.
Two‐partner secretion (TPS) systems use β‐barrel proteins of the Omp85‐TpsB superfamily to transport large exoproteins across the outer membranes of Gram‐negative bacteria. The Bordetella FHA/FhaC proteins are prototypical of TPS systems in which the exoprotein contains a large C‐terminal prodomain that is removed during translocation. Although it is known that the FhaB prodomain is required for FHA function in vivo, its role in FHA maturation has remained mysterious. We show here that the FhaB prodomain is required for the extracellularly located mature C‐terminal domain (MCD) of FHA to achieve its proper conformation. We show that the C‐terminus of the prodomain is retained intracellularly and that sequences within the N‐terminus of the prodomain are required for this intracellular localization. We also identify sequences at the C‐terminus of the MCD that are required for release of mature FHA from the cell surface. Our data support a model in which the intracellularly located prodomain affects the final conformation of the extracellularly located MCD. We hypothesize that maturation triggers cleavage and degradation of the prodomain.  相似文献   

11.
12.
The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath‐like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero‐aggregative Escherichia coli Sci‐1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self‐protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C‐terminal extension domain of VgrG1, including a transthyretin‐like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C‐terminus of VgrG proteins.  相似文献   

13.
Terminal deletions of units from α‐helical repeat proteins have provided insight into the physical origins of their cooperativity. To test if the same principles governing cooperativity apply to β‐sheet‐containing repeat proteins, we have created a series of C‐terminal deletion constructs from a large leucine‐rich repeat (LRR) protein, YopM. We have examined the structure and stability of the resulting deletion constructs by a combination of solution spectroscopy, equilibrium denaturation studies, and limited proteolysis. Surprisingly, a high degree of nonuniformity was found in the stability distribution of YopM. Unlike previously studied repeat proteins, we identified several key LRR that on deletion disrupt nearby structure, at distances as far away as up to three repeats, in YopM. This partial unfolding model is supported by limited proteolysis studies and by point substitution in repeats predicted to be disordered as a result of deletion of adjacent repeats. We show that key internal‐ and terminal‐caps must be present to maintain the structural integrity in adjacent regions (roughly four LRRs long) of decreased stability. The finding that full‐length YopM maintains a high level of cooperativity in equilibrium unfolding underscores the importance of interfacial interactions in stabilizing locally unstable regions of structure.  相似文献   

14.
The type VI secretion system (T6SS) of bacteria plays a key role in competing for specific niches by the contact‐dependent killing of competitors. Recently, Rhs proteins with polymorphic C‐terminal toxin‐domains that inhibit or kill neighboring cells were identified. In this report, we identified a novel Rhs with an MPTase4 (Metallopeptidase‐4) domain (designated as Rhs‐CT1) that showed an antibacterial effect via T6SS in Escherichia coli. We managed to develop a specific strategy by matching the diagnostic domain‐architecture of Rhs‐CT1 (Rhs with an N‐terminal PAAR‐motif and a C‐terminal toxin domain) for effector retrieval and discovered a series of Rhs‐CTs in E. coli. Indeed, the screened Rhs‐CT3 with a REase‐3 (Restriction endonuclease‐3) domain also mediated interbacterial antagonism. Further analysis revealed that vgrGO1 and eagR/DUF1795 (upstream of rhs‐ct) were required for the delivery of Rhs‐CTs, suggesting eagR as a potential T6SS chaperone. In addition to chaperoned Rhs‐CTs, neighborless Rhs‐CTs could be classified into a distinct family (Rhs‐Nb) sharing close evolutionary relationship with T6SS2‐Rhs (encoded in the T6SS2 cluster of E. coli). Notably, the Rhs‐Nb‐CT5 was confirmed bioinformatically and experimentally to mediate interbacterial antagonism via Hcp2B‐VgrG2 module. In a further retrieval analysis, we discovered various toxin/immunity pairs in extensive bacterial species that could be systematically classified into eight referential clans, suggesting that Rhs‐CTs greatly diversify the antibacterial pathways of T6SS.  相似文献   

15.
Various properties of mutants of Escherichia coli K12 lacking specific outer membrane proteins have been studied. ompA mutants are shown to grow less well than their parent strains under a variety of growth conditions, and after completion of growth to enter a decline phase in which viability is lost and the cells become heavily piliated and clump. They are defective in the uptake of amino acids, whereas the uptakes of the larger transport substrates ferrienterochelin and cyanocobalamin (vitamin B12) are normal. These ompA mutants also grow poorly at 42 °C. The implications of these results are discussed in terms of the function of the ompA. gene product. No growth or uptake defects were observed for ompB or tsx mutants.  相似文献   

16.
Protein C‐termini study is still a challenging task and far behind its counterpart, N‐termini study. MS based C‐terminomics study is often hampered by the low ionization efficiency of C‐terminal peptides and the lack of efficient enrichment methods. We previously optimized the C‐terminal amine‐based isotope labeling of substrates (C‐TAILS) method and identified 369 genuine protein C‐termini in Escherichia coli. A key limitation of C‐TAILS is that the prior protection of amines and carboxylic groups at protein level makes Arg‐C as the only specific enzyme in practice. Herein, we report an approach combining multi‐enzyme digestion and C‐TAILS, which significantly increases the identification rate of C‐terminal peptides and consequently improves the applicability of C‐TAILS in biological studies. We carry out a systematic study and confirm that the omission of the prior amine protection at protein level has a negligible influence and allows the application of multi‐enzyme digestion. We successfully apply five different enzyme digestions to C‐TAILS, including trypsin, Arg‐C, Lys‐C, Lys‐N, and Lysarginase. As a result, we identify a total of 722 protein C‐termini in E. coli, which is at least 66% more than the results using any single enzyme. Moreover, the favored enzyme and enzyme combination are discovered. Data are available via ProteomeXchange with identifier PXD004275.  相似文献   

17.
18.
UGO1 encodes an outer membrane protein required for mitochondrial fusion   总被引:1,自引:0,他引:1  
Membrane fusion plays an important role in controlling the shape, number, and distribution of mitochondria. In the yeast Saccharomyces cerevisiae, the outer membrane protein Fzo1p has been shown to mediate mitochondrial fusion. Using a novel genetic screen, we have isolated new mutants defective in the fusion of their mitochondria. One of these mutants, ugo1, shows several similarities to fzo1 mutants. ugo1 cells contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. ugo1 mutants lose mitochondrial DNA (mtDNA). In zygotes formed by mating two ugo1 cells, mitochondria do not fuse and mix their matrix contents. Fragmentation of mitochondria and loss of mtDNA in ugo1 mutants are rescued by disrupting DNM1, a gene required for mitochondrial division. We find that UGO1 encodes a 58-kD protein located in the mitochondrial outer membrane. Ugo1p appears to contain a single transmembrane segment, with its NH(2) terminus facing the cytosol and its COOH terminus in the intermembrane space. Our results suggest that Ugo1p is a new outer membrane component of the mitochondrial fusion machinery.  相似文献   

19.
Outer membrane beta-barrel proteins in gram-negative bacteria, such as Escherichia coli, must be translocated from their site of synthesis in the cytoplasm to the periplasm and finally delivered to the outer membrane. At least a dozen proteins located in the cytoplasm, the periplasm, and both the inner and outer membranes are required to catalyze this complex assembly process. At normal growth temperatures and conditions the transport and assembly processes are so fast that assembly intermediates cannot be detected. Using cells grown at a low temperature to slow the assembly process and pulse-chase analysis with immunodetection methods, we followed newly synthesized LamB molecules during their transit through the cell envelope. The quality and reproducibility of the data allowed us to calculate rate constants for three different subassembly reactions. This kinetic analysis revealed that secB and secD mutants exhibit nearly identical defects in precursor translocation from the cytoplasm. However, subsequent subassembly reaction rates provided no clear evidence for an additional role for SecD in LamB assembly. Moreover, we found that surA mutants are qualitatively indistinguishable from yfgL mutants, suggesting that the products of both of these genes share a common function in the assembly process, most likely the delivery of LamB to the YaeT assembly complex in the outer membrane.  相似文献   

20.
K R Hardie  S Lory    A P Pugsley 《The EMBO journal》1996,15(5):978-988
Only one of the characterized components of the main terminal branch of the general secretory pathway (GSP) in Gram-negative bacteria, GspD, is an integral outer membrane protein that could conceivably form a channel to permit protein transport across this membrane. PulD, a member of the GspD protein family required for pullulanase secretion by Klebsiella oxytoca, is shown here to form outer membrane-associated complexes which are not readily dissociated by SDS treatment. The outer membrane association of PulD is absolutely dependent on another component of the GSP, the outer membrane-anchored lipoprotein PulS. Furthermore, the absence of PulS resulted in limited proteolysis of PulD and caused induction of the so-called phage shock response, as measured by increased expression of the pspA gene. We propose that PulS may be the first member of a new family of periplasmic chaperones that are specifically required for the insertion of a group of outer membrane proteins into this membrane. PulS is only the second component of the main terminal branch of the GSP for which a precise function can be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号