首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many bacterial proteins involved in fundamental processes such as cell shape maintenance, cell cycle regulation, differentiation, division and motility localize dynamically to specific subcellular regions. However, the mechanisms underlying dynamic protein localization are incompletely understood. Using the SpoIIQ protein in Bacillus subtilis as a case study, two reports present important novel insights into how a protein finds its right place at the right time and remains stably bound. During sporulation, SpoIIQ localizes in clusters in the forespore membrane at the interface that separates the forespore and mother cell and functions as a landmark protein for SpoIIIAH in the mother cell membrane. The extracellular domains of SpoIIQ and SpoIIIAH interact directly effectively bridging the gap between the two membranes. Here, SpoIIQ localization is shown to depend on two pathways, one involves SpoIIIAH, the second involves two peptidoglycan‐degrading enzymes SpoIIP and SpoIID; and, SpoIIQ is only delocalized in the absence of all three proteins. Importantly, in the absence of SpoIIIAH, SpoIIQ apparently localizes normally. However, FRAP experiments demonstrated that SpoIIQ is not stably maintained in the clusters in this mutant. Thus, a second targeting pathway can mask significant changes in the localization of a protein.  相似文献   

2.
《Autophagy》2013,9(8):1203-1205
Degradation of mitochondria is a fundamental process conserved from yeast to humans that utilizes the machinery of autophagy. In contrast to starvation-induced, nonselective autophagy responsible for nutrient recycling, selective autophagy, which involves particular cues and receptors required for induction and cargo recognition, respectively, mediates mitochondria-specific breakdown. Although numerous studies highlight that mitochondria autophagy (mitophagy) contributes to homeostatic control of mitochondria, the molecular mechanisms underlying this selective clearance process are poorly understood. Using a genome-wide visual screen, we identified Atg32, a protein essential for mitophagy in budding yeast. During respiratory growth, Atg32 is highly expressed, likely in response to oxidative stress, and anchored on the surface of mitochondria. We also demonstrate that Atg32 interacts with Atg8 and Atg11, proteins critical for recognition of cargo receptors. Notably, Atg32 contains WXXI/L/V, a conserved motif that serves as a binding site for the Atg8 family members. Our recent findings suggest that Atg32 is a transmembrane receptor that directs autophagosome formation to mitochondria.  相似文献   

3.
Male Wistar rats aged 30, 75 and 150 days were fed for 14 days ad libitum on diets with an optimum protein content (15% for 30-day-old, 12.5% for 75-day-old and 10% for 150-day-old animals) and a mounting fat content (from 5 to 40%), supplemented by saccharides (from 76 to 41%). Net protein utilization was determined for each of the diets from the body nitrogen and protein intake values. Protein retention values were determined from protein intake on the basis of net protein utilization (NPU). Energy intake was computed from fat and saccharide intake, using energy coefficients. The optimum fat content of the diet, evaluated from the maximum protein retention value per day and the minimum amount of energy needed for the retention of 1 g protein, is 30% at 30 days, 15% at 75 days and 10% at 150 days. Protein retention per kg body weight falls with advancing age--mildly at 75 days compared with 30 days, but markedly at 150 days. From their smaller weight increments and NPU values and also from their lower protein retention, 150-day-old animals are characterized by slower growth and higher protein requirements for maintenance of their organism likewise demonstrated by the growth parameter net protein ratio (NPR). Energy requirements for total protein retention/day per kg body weight diminish with age. In old age a small amount of energy is needed only for the maintenance of body functions. This study contributes to the expression of the interrelationship of energy requirements and protein retention.  相似文献   

4.
Proteolytic cleavage of the Hendra virus fusion (F) protein results in the formation of disulfide-linked F1 and F2 subunits, with cleavage occurring after residue K109 in the sequence GDVK/L. This unusual cleavage site and efficient propagation of Hendra virus in a furin-deficient cell line indicate that the Hendra F protein is not cleaved by furin, the protease responsible for proteolytic activation of many viral fusion proteins. To identify the subcellular site of Hendra F processing, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F were metabolically labeled and chased in the absence and presence of inhibitors of exocytosis. The addition of carbonyl-cyanide-3-chlorophenylhydrazone, monensin, brefeldin A, or NaF-AlCl3 or incubation of cells at 20 degrees C all inhibited processing of the Hendra F protein, suggesting that cleavage of Hendra F occurs either in secretory vesicles budding from the trans-Golgi network or at the cell surface. In contrast to proteolytic cleavage of the simian virus 5 (SV5) F protein by the Ca(2+)-dependent protease furin, proteolytic cleavage of the Hendra F protein was not significantly inhibited by decreases in Ca2+ levels following incubation with EGTA or A23187. However, in the presence of weak amines and H+ V-ATPase inhibitors, known to raise intracellular pH, cleavage of Hendra F protein was inhibited while processing of the SV5 F protein was not significantly affected. The subcellular location, sensitivity to pH changes, and decreased Ca2+ requirement suggest that the protease responsible for cleavage of Hendra F protein differs from proteases previously shown to be involved in the processing of other viral glycoproteins.  相似文献   

5.
The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5′-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography.  相似文献   

6.
7.
Protein immobilization strategies for protein biochips   总被引:1,自引:0,他引:1  
In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein immobilization, in order to fully realize the potential of protein biochips. In fact, protein immobilization is the key to the success of microarray technology. Proteins need to be immobilized onto surfaces with high density in order to allow the usage of small amount of sample solution. Nonspecific protein adsorption needs to be avoided or at least minimized in order to improve detection performances. Moreover, full retention of protein conformation and activity is a challenging task to be accomplished. Although a large number of review papers on protein biochips have been published in recent years, few have focused on protein immobilization technology. In this review, current protein immobilization strategies, including physical, covalent, and bioaffinity immobilization for the fabrication of protein biochips, are described. Particular consideration has been given to oriented immobilization, also referred to as site-specific immobilization, which is believed will improve homogeneous surface covering and accessibility of the active site.  相似文献   

8.
The coxsackievirus 2B protein is a small hydrophobic protein (99 amino acids) that increases host cell membrane permeability, possibly by forming homo-multimers that build membrane-integral pores. Previously, we defined the functional role of the two hydrophobic regions HR1 and HR2. Here, we investigated the importance of regions outside HR1 and HR2 for multimerization, increasing membrane permeability, subcellular localization, and virus replication through analysis of linker insertion and substitution mutants. From these studies, the following conclusions could be drawn. (i) The hydrophilic region ((58)RNHDD(62)) between HR1 and HR2 is critical for multimerization and increasing membrane permeability. Substitution analysis of Asn(61) and Asn(62) demonstrated the preference for short polar side chains (Asp, Asn), residues that are often present in turns, over long polar side chains (Glu, Gln). This finding supports the idea that the hydrophilic region is involved in pore formation by facilitating a turn between HR1 and HR2 to reverse chain direction. (ii) Studies undertaken to define the downstream boundary of HR2 demonstrated that the aromatic residues Trp(80) and Trp(82), but not the positively charged residues Arg(81), Lys(84), and Lys(86) are important for increasing membrane permeability. (iii) The N terminus is not required for multimerization but does contribute to the membrane-active character of 2B. (iv) The subcellular localization of 2B does not rely on regions outside HR1 and HR2 and does not require multimerization. (v) Virus replication requires both the membrane-active character and an additional function of 2B that is not connected to this activity.  相似文献   

9.
To delineate the role of the melanocyte lineage-specific protein Melan-A/MART-1 in melanogenic functions, a set of biochemical and microscopical studies was performed. Biochemical analysis revealed that Melan-A/MART-1 is post-translationally acylated and undergoes a rapid turnover in a pigmented melanoma cell line. Immunofluorescence and immunoelectron microscopy analyses indicated that Melan-A/MART-1 is mainly located in the Golgi area and only partially colocalizes with melanosomal proteins. Quantitative immunoelectron microscopy showed that the highest proportion of the cellular content of Melan-A/MART-1 was found in small vesicles and tubules throughout the cell, whereas the concentration was maximal in the Golgi region, particularly the trans-Golgi network. Substantial labeling was also present on melanosomes, endosomes, ER, nuclear envelope, and plasma membrane. In early endosomes, Melan-A was enriched in areas of the limiting membrane covered by a bi-layered coat, a structural characteristic of melanosomal precursor compartments. Upon melanosome maturation, Melan-A concentration decreased and its predominant localization shifted from the limiting membrane to internal vesicle membranes. In conjunction with its acylation, the high expression levels of Melan-A in the trans-Golgi network, in dispersed vesicles, and on the limiting membrane of premelanosomes indicate that the protein may play a role during the early stage of melanosome biogenesis.  相似文献   

10.
The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5'-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography.  相似文献   

11.
The three-dimensional structures of homologous proteins are usually conserved during evolution, as are critical residues in a few short sequence motifs that often constitute the active site in enzymes. The precise spatial organization of such sites depends on the lengths and positions of the secondary structural elements connecting the motifs. We show how members of protein superfamilies, such as kinesins, myosins, and G(alpha) subunits of trimeric G proteins, are identified and classed by simply counting the number of amino acid residues between important sequence motifs in their nucleotide triphosphate-hydrolyzing domains. Subfamily-specific landmark patterns (motif to motif scores) are principally due to inserts and gaps in surface loops. Unusual protein sequences and possible sequence prediction errors are detected.  相似文献   

12.
Interactor/inhibitor 1 of Cdc2 kinase (ICK1) from Arabidopsis thaliana is the first plant cyclin-dependent kinase (CDK) inhibitor, and overexpression of ICK1 inhibits CDK activity, cell division and plant growth in transgenic plants. In this study, ICK1 and deletion mutants were expressed either alone or as green fluorescent protein (GFP) fusion proteins in transgenic Arabidopsis plants. Deletion of the C-terminal 15 or 29 amino acids greatly reduced or completely abolished the effects of ICK1 on the transgenic plants, and recombinant proteins lacking the C-terminal residues lost the ability to bind to CDK complex and the kinase inhibition activity, demonstrating the role of the conserved C-terminal domain in in vivo kinase inhibition. In contrast, the mutant ICK1DeltaN108 with the N-terminal 108 residues deleted had much stronger effects on plants than the full-length ICK1. Analyses demonstrated that this effect was not because of an enhanced ability of ICK1DeltaN108 protein to inhibit CDK activity, but a result of a much higher level of ICK1DeltaN108 protein in the plants, indicating that the N-terminal domain contains a sequence or element increasing protein instability in vivo. Furthermore, GFP-ICK1 protein was restricted to the nuclei in roots of transgenic plants, even with the C-terminal or the N-terminal domain deleted, suggesting that a sequence in the central domain of ICK1 is responsible for nuclear localization. These results provide mechanistic understanding about the function and regulation of this cell cycle regulator in plants.  相似文献   

13.
XPA repair protein is absolutely needed for nucleotide excision repair (NER). It preferentially binds UV-irradiated DNA in vitro and possibly takes place in the recognition of pyrimidine dimers, the main type of UV-lesions in DNA. Using immunofluorescent microscopy and immunoblotting technique we have found that XPA protein is fully extractable by Triton X-100 solution from non-irradiated normal human fibroblasts, but after UV-irradiation its extractability decreases in UV-dose dependent manner. UV-induced XPA-immobilization was observed in human cell lines with different types of repair defects, but XPA-extractability from unirradiated cells of these lines was significantly lower in comparison with normal fibroblasts. These data do not permit to make conclusion concerning the distinct connection of this phenomenon with different pathways of NER. Histone deacetylase inhibitor, sodium butyrate, did not change the level of extractability in unirradiated and UV-irradiated normal human cells and CHO cells, defective in global genome repair, that indicated the independence of XPA-immobilization from the level of histone acetylation. It was established with the help of confocal microscopy that XPA-foci in detergent-treated UV-irradiated cell were partially colocalized with the focal sites of PCNA, an auxiliary protein of DNA polymerases delta and epsilon. It may mean that a part of detergent-resistant XPA foci correspond to DNA repair synthesis sites, but the major part of immobilized XPA reflects the early step of repair proteins assembly formation needed for the repair of the lesions.  相似文献   

14.
We previously identified a protein (p67) in the yeast, Saccharomyces cerevisiae, that specifically recognizes nuclear localization sequences. We report here the partial purification of p67, and the isolation, sequencing, and disruption of the gene (NSR1) encoding this protein. p67 was purified using an affinity column conjugated with a peptide containing the histone H2B nuclear localization sequence from yeast. Using antibodies against p67 we have cloned the gene for this protein. The protein encoded by the NSR1 gene recognizes the wild-type H2B nuclear localization sequence, but does not recognize a mutant H2B sequence that is incompetent for nuclear localization in vivo. Interestingly, the NSR1 protein has two RNA recognition motifs, as well as an acidic NH2 terminus containing a series of serine clusters, and a basic COOH terminus containing arg-gly repeats. We have confirmed the nuclear localization of p67 by immunofluorescence and found that a restricted portion of the nucleus is highlighted. We have also shown that NSR1 (p67) is required for normal cell growth.  相似文献   

15.

Background  

Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST) or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag). Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case) leading to the requirement for chemical coupling.  相似文献   

16.
Site-directed protein immobilization allows the homogeneous orientation of proteins with high retention of activity, which is advantageous for many applications. Here, we report a facile, specific, and efficient strategy based on the SpyTag-SpyCatcher chemistry. Two SpyTag-fused model proteins, that is, the monomeric red fluorescent protein (RFP) and the oligomeric glutaryl-7-aminocephalosporanic acid acylase, were easily immobilized onto a SpyCatcher-modified resin directly from cell lysates, with activity recoveries in the range of 85–91%. This strategy was further adapted to protein purification, which proceeded through the selective capture of the SpyCatcher-fused target proteins by a SpyTag-modified resin, with the aid of an intein to generate authentic N-termini. For two model proteins, that is, RFP and a variable domain of a heavy chain antibody, the yields were ∼3–7 mg/L culture with >90% purities. This approach could provide a versatile tool for producing high-performance immobilized protein devices and proteins for industrial and therapeutic uses.  相似文献   

17.
18.
The protein phosphatases1 (PP1) and 2A (PP2A) serve as ceramide-activated protein phosphatases (CAPP). In this study, the structural requirements for interaction between ceramide and CAPP were determined. D-erythro-C(6) ceramide activated the catalytic subunit of PP2A (PP2Ac) approximately 3-fold in a stereospecific manner. In contrast, saturation of the 4-5 double bond, producing D-erythro-dihydro C(6) ceramide, inhibited PP2Ac (IC(50) = 8.5 microM). Furthermore, phyto C(6) ceramide, D-erythro-dehydro C(6) ceramide, and D-erythro-cis-C(6) ceramide had no effect on PP2Ac activity. Modification of the sphingoid chain also abolished the ability of ceramide to activate PP2Ac. Further studies demonstrated the requirement for the amide group, the primary hydroxyl group, and the secondary hydroxyl group of the sphingoid backbone for activation of PP2Ac through the synthesis and evaluation of D-erythro-urea C(6) ceramide, L-erythro-urea C(6) ceramide, D-erythro-N-methyl C(6) ceramide, D-erythro-L-O-methyl C(6) ceramide, D-erythro-3-O-methyl C(6) ceramide, and (2S) 3-keto C(6) ceramide. None of these compounds induced significant activation of PP2Ac. Liposome binding studies were also conducted using analogs of D-erythro-C C(6) ceramide, and the results showed that the ability of ceramide analogs to influence CAPP (activation or inhibition) was associated with the ability of the analogs to bind to CAPP. This study demonstrates strict structural requirements for interaction of ceramide with CAPP, and disclose ceramide as a very specific regulator of CAPP. The studies also begin to define features that transform ceramide analogs into inhibitors of CAPP.  相似文献   

19.
The insulin receptor protein kinase. Physicochemical requirements for activity   总被引:13,自引:0,他引:13  
We determined that the rate of insulin-stimulated autophosphorylation of the insulin receptor is independent of receptor concentration and thus proceeds via an intramolecular process. This result is consistent with the possibility that ligand-dependent autophosphorylation may be a means by which cells can distinguish occupied from unoccupied receptors. We employed dithiothreitol to dissociate tetrameric receptor into alpha beta halves in order to further elucidate the structural requirements for the receptor-mediated kinase activity. Dithiothreitol had a complex biphasic effect on insulin-stimulated receptor kinase activity. Marked stimulation of kinase activity was observed at 1-2 mM dithiothreitol when the receptor was predominantly tetrameric and kinase activity diminished when dimeric alpha beta receptor halves predominate (greater than 2 mM dithiothreitol). N-Ethylmaleimide inhibits insulin-stimulated receptor kinase activity. We suggest that the tetrameric holoreceptor is the most active kinase structure and this structure requires for maximal activity, a reduced sulfhydryl group at or near the active site. We treated receptor preparations with elastase to generate receptor proteolytically "nicked" in the beta subunit. This treatment completely abolishes insulin-dependent autophosphorylation and histone phosphorylation with essentially no effects on insulin binding as determined by affinity labeling of the receptor alpha subunit. We suggest such treatment functionally uncouples insulin binding from insulin-stimulated receptor kinase activity. The possible physiological significance of these findings is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号