首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prey preference of polyphagous predator, green lacewing (Chrysoperla zastrowi sillemi (Esben-Petersen)) was evaluated against five prey aphids viz., mustard aphid (Lipaphis erysimi), green peach aphid (Myzus persicae), cabbage aphid (Brevicorynebrassicae), black bean aphid (Aphis craccivora), spirea aphid (Aphis spiraecola) of agriculture importance and compared with eggs of Corcyracephalonica (Stainton). Lacewing larvae preferred Myzus persicae most followed by Brevicorynebrassicae. The highest growth index (8.31), larval survival (94.50 %), larval weight (10.45 mg), pupal weight (8.78 mg), faster multiplication rate (0.051) and fecundity (183.4 per gravid female) of the predator were recorded on M. persicae. However, the chrysopid reared on Corcyra eggs performed best in all biological parameters and fitness, than on aphid preys. This study explores the possibilities of selecting the most suitable prey aphid species for its exploitation as supplement for mass multiplication of chrysopid during off-season or unavailability of Corcyra eggs.  相似文献   

2.
Changes in the level of hydrogen peroxide (H2O2) and activity of peroxidases towards phenolic substrates (EC 1.11.1.7) such as pyrogallol (PPX), syringaldazine (SPX) and guaiacol (GPX), and cytosolic ascorbate peroxidase (cAPX, EC 1.11.1.11) in response to infestation of cowpea aphid (Aphis craccivora Koch) were analyzed in soybean (Glycine max (L.) Merr. cv. “Nam Dan”) at the V3 stage (first two trifoliate leaves fully developed, third trifoliate leaf unrolled) for 96 h post-infestation (hpi). Influence of A. craccivora at a varied population size (10, 20 and 30 individuals per each soybean plant) caused a burst of H2O2 generation in the aphid-infested leaves at 12 hpi. Paralleling the H2O2 accumulation, peroxidase activity in all the infested plants remarkably increased and was significantly higher than that observed in controls (uninfested plants). The cascade of enzymes induced was continuously overlapped by the early enhancement of SPX within 6–24 hpi, an expression of cAPX (12–48 hpi) followed by an accumulation of GPX (24–72 hpi) and PPX (24–96 hpi). The differential induction of SPX, GPX, PPX and cAPX resulted in a rapid reduction of H2O2 content in aphid-infested leaves, and the activity of peroxidase was closely correlated with the intensity of A. craccivora infestation around the defined points of time at which the activity of each enzyme reached the maximum level. The increase in activity of peroxidases matched their function as controlling accumulation of H2O2 and detoxifying this reactive oxygen product when soybean plants were challenged with cowpea aphid. Furthermore, peroxidases could directly deter cowpea aphid feeding through other functions such as the anti-nutritive and/or toxicological defenses and/or limiting the penetration of aphid stylets into plant tissues via participating to strengthen and reinforce the cell wall barrier. These results indicated that peroxidases may be some elements of the defense system that increased the resistance of G. max cv. “Nam Dan” to infestation of A. craccivora.  相似文献   

3.
The study was carried out to investigate the ability of three aphids, Myzus persicae, Aphis gossypii and Aphis spiraecola, to acquire and retain the Potato Virus Y (PVY) isolate, PVYNTN. Tobacco plants, Nicotiana tabacum var. Xanthi, were used as test plant for the virus inoculation and aphid acquisition. The serological test double-antibody sandwich enzyme-linked immunosorbent assay was applied for virus detection on the test plants and aphids. Furthermore, virus retention by aphids was also assessed using a monoclonal anti-PVYN. Although a duration of 2 min was enough for the virus acquisition, the three tested aphids showed different capacities to retain PVYNTN. The retention of PVYNTN was 3 h for M. persicae and A. spiraecola, and 2 h for A. gossypii. This study provides basic information of the virus retention by potato-colonizing aphid species, which may increase our understanding of PVY epidemiology in Tunisia.  相似文献   

4.
The biotic and abiotic factors including the agricultural implementation can modify soil acidification. We hypothesized that soil pH should as repercussion, alter the plant physiological and physical properties and eventually affect insect herbivores including agricultural pests. This study aimed to evaluate the impact of seven levels of soil pH on the performance of cowpea aphid Aphis craccivora on Vicia faba. Significant relationships between soil pH and growth of host bean seedlings or development and reproduction of the aphid were detected. Data demonstrated significant differences in the total longevity, the pre-reproductive, reproductive, post-reproductive and pre-viviparity periods. Within a suitable range of pH for bean growth between pH 5.3 and pH 7.2, the aphid performance was worse on seedlings growing better, however, under unfavorable extreme pH conditions, plant quality measured as height did not affect the aphids anymore and their performance was uniformly low except the case in pH 8.1 condition in which the best aphid reproduction was observed. The results confirm that soil pH affect the performance of cowpea aphid A. craccivora and also exhibited strong influence on the growth of broad bean plants.  相似文献   

5.

Key message

Two novel QTLs conferring aphid resistance were mapped and validated on soybean chromosomes 8 and 16, respectively. Closely linked markers were developed to assist breeding for aphid resistance.

Abstract

Soybean aphid, Aphis glycines Matsumura, is a highly destructive pest for soybean production. E08934, a soybean advanced breeding line derived from the wild soybean Glycine soja 85-32, has shown strong resistance to aphids. To dissect the genetic basis of aphid resistance in E08934, a mapping population (070020) consisting of 140 F3-derived lines was developed by crossing E08934 with an aphid-susceptible line E00003. This mapping population was evaluated for aphid resistance in a greenhouse trial in 2010 and three field trials in 2009, 2010, and 2011, respectively. The broad-sense heritability across the field trials was 0.84. In the mapping population 070020, two major quantitative trait loci (QTL) were detected as significantly associated with aphid resistance, and designated as Rag6 and Rag3c, respectively. Rag6 was mapped to a 10.5 centiMorgan (cM) interval between markers MSUSNP08-2 and Satt209 on chromosome 8, explaining 19.5–46.4% of the phenotypic variance in different trials. Rag3c was located at a 7.5 cM interval between markers MSUSNP16-10 and Sat_370 on chromosome 16, explaining 12.5–22.9% of the phenotypic variance in different trials. Rag3c had less resistance effect than Rag6 across all the trials. Furthermore, Rag6 and Rag3c were confirmed in two validation populations with different genetic backgrounds. No significant interaction was detected between Rag6 and Rag3c in either the mapping population or the validation populations. Both Rag6 and Rag3c were indicated as conferring antibiosis resistance to aphids by a no-choice test. The new aphid-resistance gene(s) derived from the wild germplasm G. soja 85-32 are valuable in improving soybeans for aphid resistance.
  相似文献   

6.
An aphidophagous ladybird, Platynaspidius maculosus (Weise) (Coleoptera: Coccinellidae), is originally distributed in China, Taiwan, and Vietnam. The ladybird has recently intruded into the southern and central parts of Japan. The present study found that the larvae of this ladybird preyed on three aphid species, Aphis spiraecola, Aphis gossypii, and Toxoptera citricidus (all Hemiptera: Aphididae), feeding on young shoots of various Citrus species in August to early October in Shizuoka Prefecture, central Japan. Laboratory rearing of the sampled larvae confirmed that the larvae completed their development (adult emergence) by consuming each of the three aphid species. The ladybird larvae were observed foraging in aphid colonies attended by one of the four ants, Lasius japonicus, Pristomyrmex punctatus, Formica japonica, and Camponotus japonicus (all Hymenoptera: Formicidae). Field observations revealed that the foraging/feeding larvae were almost completely ignored by honeydew-collecting ants even when they physically contacted each other. Thus, in Japan, the larvae of the exotic ladybird exploit colonies of the three aphid species attended by one of the four ant species on many Citrus species. On the basis of the results, I discuss the possibility of the ladybird’s reproduction on citrus trees in Japan, probable adaptations of the ladybird larvae to aphid-attending ants, and potential impacts of the ladybird on native insect enemies attacking ant-attended aphids on citrus.  相似文献   

7.
Saline soils are becoming an important limiting factor in production agriculture. Soybean cultivars [Glycine max (L.) Merr.] differ in their ability to tolerate salt stress with those that cannot limit ion uptake into leaves being salt sensitive. Those that can partially limit ion uptake into leaves are generally more salt tolerant. Soybean mosaic virus (SMV) is an important viral pathogen of soybean worldwide and is commonly transmitted by the soybean aphid, Aphis glycines Matsumura. In this study, we investigate the interaction of salt stress in soybean with SMV infection and infestation by the soybean aphid by measuring aphid populations in a no-choice assay, gene expression levels, and the induction of volatile organic compounds using static headspace GC–MS analysis. Salt stress and SMV infection both reduced total aphid populations, though SMV did not reduce the total number of aphids per gram of fresh weight. Aphid suppression of a calcium EF hand gene and OPR1 was lost when salt-sensitive soybean plants were salt stressed and when salt-tolerant plants were subjected to all three stressors. The relative levels of SMV in aphid-infested soybeans were increased by salt stress in the salt-sensitive cultivar, whereas SMV levels decreased in the salt-tolerant cultivar. Static headspace collection of volatile organic compounds revealed that salt stress and SMV infection had suppressive activities on aphid-induced terpenes. These results suggest that although salt stress has a negative impact on aphid population size, the changes in volatiles and SMV levels could alter the incidence of SMV in salt-stressed fields.  相似文献   

8.
We investigated intraguild predation (IGP) on an aphid parasitoid, Aphelinus asychis Walker (Hymenoptera: Aphelinidae), by the multicolored Asian ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), and used the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) as the prey/host in the laboratory. The ladybirds reared on artificial diet and on aphids consumed more aphids than mummies, while those reared on parasitized aphids consumed similar numbers of aphids and mummies. The ladybirds chose more mummies in treatments when mummies were more abundant, and more aphids when numbers of aphids and mummies were equal, or when aphids were more abundant. However, at all density treatments, rejection rates of mummies (36%) were much greater than of aphids (2%). H. axyridis prey on more aphids than A. asychis mummies, which enhances biological control by the two species. However, prior feeding experience affected subsequent choice, increasing the competition between natural enemies which would reduce their combined effectiveness for biological control.  相似文献   

9.
Richness and abundance of facultative symbionts vary strongly with aphid species and genotype, symbiont strain, host plant, biogeography, and a number of abiotic factors. Despite indications that aphids in the same ecological niche show similar levels of facultative symbiont richness, existing reports do not consider the potential role of host plants on aphid microbial community. Little is known about how oligophagy and polyphagy may be influenced by secondary symbiont distribution, mainly because studies on secondary symbiont diversity are biased towards polyphagous aphids from the Northern Hemisphere. Here, we demonstrate the richness and abundance of the most common aphid-associated facultative symbionts in two tropical aphid species, the oligophagous Aphis (Toxoptera) citricidus (Kirkaldy) (Hemiptera: Aphididae) and the polyphagous Aphis aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae). Aphis citricidus is restricted to Citrus sp. host plants and closely related genera, whereas A. aurantii successfully exploits a wide variety of host plants from different families. Both were collected in the same ecological niche and our data basically indicated the same richness of secondary symbionts, but the abundance at which secondary symbionts occurred was very distinct between the two species. Spiroplasma was the most abundant facultative symbiont associated with A. citricidus and A. aurantii in the ecological niche studied. Single and multiple secondary symbiont infections were observed, but diversity of multiple infections was particularly high in A. citricidus. We discuss our findings and suggest hypotheses to explain causes and consequences of the differences in secondary symbiont diversity observed between these two aphid species.  相似文献   

10.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a limiting factor in soybean production in the North Central region of the USA. The objectives of this work were to identify sources of resistance to A. glycines in 14 soybean genotypes, and also document changes in total protein, peroxidase, and chlorophyll in response to aphid feeding. A reduced number of A. glycines was observed on the genotypes UX 2569-159-2-01 and UX 2570-171- 04, indicating the presence of antixenosis and/or antibiosis. UX 2569-159-2-01 expressed the highest level of resistance; whereas, UX 2570-171-04 had moderate levels of resistance to A. glycines. Chlorophyll content was relatively unaffected by A. glycines, except for a reduction in UX 2569-159-2-01 infested plants at 5 and 15 days after infestation (DAI). No changes were detected in total protein content between infested and control plants for the genotypes analyzed; however, peroxidase activity was higher in infested UX 2570-171-04 at both 5 and 10 DAI. This improvement in peroxidase content in infested UX 2570-171-04 may be playing multiple roles in the plant tolerance.  相似文献   

11.
The aphid parasitoid Lysiphlebus testaceipes is a potentially valuable biological control agent of Aphis gossypii a major worldwide pest of cotton. One means of increasing the abundance of a biological control agent is to provide an alternative host habitat adjacent to cropping, from which they can provide pest control services in the crop. Host selection and parasitism rate of an alternative host aphid, Aphis craccivora by L. testaceipes were studied in a series of experiments that tested its host suitability relative to A. gossypii on cotton, hibiscus and mungbean. Host acceptance, as measured by number of ovipositions was much greater in A. craccivora compared to A. gossypii, while more host aphids were accepted on mungbean than cotton. When given a choice L. testaceipes attacks more 4th instar and adult stages (63% and 70%, respectively) of both hosts than 2nd instar nymphs (47%). In a switching (host choice) experiment, L. testaceipes preferentially attacked A. craccivora on mungbean over A. gossypii on cotton. Observations of parasitoid contact with A. gossypii cornicle secretion suggest it provides a useful deterrent against parasitoid attack. From these experiments it appears L. testaceipes has a preference for A. craccivora and mungbean compared to A. gossypii and cotton, in this respect using A. craccivora and mungbean as alternative habitat may not work as the parasitoid is unlikely to switch away from its preferred host.  相似文献   

12.
Induced resistance is one of the important components of host plant resistance to insects. We studied the induced defensive responses in groundnut genotypes with different levels of resistance to the leaf defoliator Helicoverpa armigera and the sap-sucking insect Aphis craccivora to gain an understanding of the induced resistance to insects and its implications for pest management. The activity of the defensive enzymes (peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, superoxide dismutase, ascorbate peroxidase, and catalase) and the amounts of total phenols, hydrogen peroxide, malondialdehyde, and proteins were recorded at 6 days after infestation. Induction of enzyme activities and the amounts of secondary metabolites were greater in the insect-resistant genotypes ICGV 86699, ICGV 86031, ICG 2271, and ICG 1697 infested with H. armigera and A. craccivora than in the susceptible check JL 24. The resistant genotypes suffered lower insect damage and resulted in lower Helicoverpa larval survival and weights than those larvae fed on the susceptible check JL 24. The number of aphids was significantly lower on insect-resistant genotypes than on the susceptible check JL 24. The results suggested that groundnut plants respond to infestation by H. armigera and A. craccivora in a similar way; however, the degree of the response differed across the genotypes and insects, and this defense response is attributed to various defensive enzymes and secondary metabolites.  相似文献   

13.
The green peach aphid, Myzus persicae (Sulzer), is one of the most important aphid pests on pepper. Aphidius matricariae Haliday and Praon volucre (Haliday) are known as biological control agents for aphids in vegetable crops. In this research, age-specific functional responses of these two parasitoids were evaluated on different densities of 2, 4, 8, 16, 32, and 64 green peach aphids. Type of functional response varied from type II to type III for different ages of A. matricariae, but type of functional response was not affected by female age for P. volucre. The functional response of P. volucre was determined as type II in the whole parasitoid lifetime. The searching efficiency (a), b, and handling time (T h ) were estimated using the Rogers equations. The highest searching efficiency (a) and lowest handling time were observed during the first half of lifetime of A. matricariae and P. volucre. Aphidius matricariae and P. volucre caused reasonable mortality of the green peach aphid by parasitism of 52.17 and 47.05 host aphids, respectively, in 24 h. Therefore, they are suggested as suitable candidates for control of M. persicae in pepper greenhouses.  相似文献   

14.
The virus-vector-host relationships of cowpea aphid-borne mosaic virus (CAMV) and its vector, Aphis craccivora, were studied in cowpea lines differing in resistance to aphid infestation. CAMV was acquired and inoculated by its vector during brief probes, confirming that it is non-persistently transmitted. On aphid-resistant cowpea lines, the abundance and the relative sizes of aphids was less than in aphid-tolerant and aphid-susceptible lines. However, aphids were observed to make more numerous probes and probes of shorter duration on aphid-resistant lines than on aphid-susceptible lines. Resistance to aphid infestation in cowpea did not provide resistance to infection with CAMV.  相似文献   

15.
In order to maximize the lifetime reproductive success of parasitoids, they should be induced to dynamically accept individual hosts that have different suitability for oviposition. Parasitoids tend to exhibit higher host-selective behavior when their egg load is limited, and are less selective if they are facing time constraints. Here, we evaluated the effects of parasitoid age on egg load, fecundity and host instar preference of a honey-fed aphid parasitoid, Aphelinus asychis Walker (Hymenoptera: Aphelinidae). Host selective experiment was conducted to measure host-preference of honey-fed A. asychis females at different ages, using the second and fourth instars of the green peach aphid Myzus persicae as their hosts. The results showed that the choice of host-instar for oviposition was significantly influenced by the parasitoid age. Honey-fed parasitoids in the age groups of 1, 5, 10 and 20 days tended to parasitize predominantly second-instar aphids, whereas 15-days old parasitoids showed no significant preference of host instars. On the other hand, host-feeding preference was not affected by parasitoid age. Parasitoid females of all ages preferred younger aphids to older aphids. This result could help evaluate the effectiveness of A. asychis for biological control of M. persicae when they encountered mixed-instar aphids in the field. In addition, the results might be helpful in assessing the host killing effects of other host-feeding parasitoids.  相似文献   

16.
Plants have co-evolved with a diverse array of pathogens and insect herbivores and so have evolved an extensive repertoire of constitutive and induced defence mechanisms activated through complex signalling pathways. OXI1 kinase is required for activation of mitogen-activated protein kinases (MAPKs) and is an essential part of the signal transduction pathway linking oxidative burst signals to diverse downstream responses. Furthermore, changes in the levels of OXI1 appear to be crucial for appropriate signalling. Callose deposition also plays a key role in defence. Here we demonstrate, for the first time, that OXI1 plays an important role in defence against aphids. The Arabidopsis mutant, oxi1-2, showed significant resistance both in terms of population build-up (p?<?0.001) and the rate of build-up (p?<?0.001). Arabidopsis mutants for β-1,3-glucanase, gns2 and gns3, showed partial aphid resistance, significantly delaying developmental rate, taking two-fold longer to reach adulthood. Whilst β-1,3-glucanase genes GNS1, GNS2, GNS3 and GNS5 were not induced in oxi1-2 in response to aphid feeding, GNS2 was expressed to high levels in the corresponding WT (Col-0) in response to aphid feeding. Callose synthase GSL5 was up-regulated in oxi1-2 in response to aphids. The results suggest that resistance in oxi1-2 mutants is through induction of callose deposition via MAPKs resulting in ROS induction as an early response. Furthermore, the results suggest that the β-1,3-glucanase genes, especially GNS2, play an important role in host plant susceptibility to aphids. Better understanding of signalling cascades underpinning tolerance to biotic stress will help inform future breeding programmes for enhancing crop resilience.  相似文献   

17.
Nymphs of Aphis glycines Matsumura were individually reared to adults in the laboratory on detached leaf discs of Trifolium repens L. (white clover) mounted on agar medium. Adults of A. glycines were fed T. repens within small clip cages in the field. Development, reproduction and intrinsic rates of increase of A. glycines were studied. These data were compared to those of controls fed known host plants including cultivated soybean Glycine max (L.) Merr. and the wild soybean species Glycine soja Sieb & Zucc. The results demonstrated that nymphs of A. glycines successfully developed into adults and reproduced efficiently when reared on T. repens in the laboratory. The lower development temperature threshold for nymphs fed T. repens was estimated as 8.27 °C, and the effective cumulative temperature for A. glycines development from nymph to adult was 90.91 degree-days. Adults of A. glycines could also survive on T. repens in the field, but only a few nymphs were produced.  相似文献   

18.
Herbivore feeding on host plants may induce defense responses of the plant which influence other herbivores and interacting species in the vicinity, such as natural enemies. The present work evaluated the impact of pre-infestation with the tobacco whitefly Bemisia tabaci cryptic species MEAM 1, on the predation ability of the ladybird Propylea japonica, to the green peach aphid Myzus persicae, on tomato plants. The results show that B. tabaci pre-infestation density, duration, and leaf position, can impact prey consumed by P. japonica under various aphid densities. The aphids consumed by P. japonica in each treatment were fit using the Holling type II functional response equation. The predatory efficiency (a/T h) of P. japonica was the highest in the treatment with 60 aphids and 48-h infestation directly on damaged leaves. The predatory efficiencies of P. japonica decreased with a reduction of pre-infestation density and duration. We also observed that pre-infestation on young and undamaged leaves increased predation by P. japonica.  相似文献   

19.
Insect-resistant transgenic cotton has been commercialized for two decades. Most of the introduced cultivars express Bt gene(s) constitutively under the control of 35S promoter in whole-plant tissues. However, there have been other promoters considered by researchers to confine the toxin expression to targeted organ and tissues. We developed a triple-gene construct including GNA, cry1Ac and cp4 epsps genes. We attempted to confine cry1Ac expression to insect biting sites by cloning it to downstream of a wound-inducible promoter isolated from Asparagus officinalis (AoPR1). Moreover, to broaden the range of resistance, GNA was driven by the 35S promoter to target the sap-sucking insects like aphids which impose large losses in cotton production. To select the transformants in selection medium and for glyphosate tolerance, GNA and cry1Ac genes were accompanied with cp4 epsps gene. Two binary vectors harboring desired genes were constructed and utilized in the study (pGTGNAoC1AC and pGTGN35C1AC). Transformation of cultivar GSN-12 was carried out by employing Agrobacterium tumefaciens strain EHA105. Plantlets were primarily screened under glyphosate (N-phosphonomethyl glycine) selection pressure and subsequently subjected to molecular and biotoxicity assays. Introduction of cry1Ac and GNA to cotton plant conferred resistance to Spodoptera littoralis and Aphis gossypii Glover. Restriction of cry1Ac toxin protein to insect biting sites along with a plant lectin attributes significantly to insect pest management strategies.  相似文献   

20.
Climate change leads to phenology shifts of many species. However, not all species shift in parallel, which can desynchronize interspecific interactions. Within trophic cascades, herbivores can be top–down controlled by predators or bottom–up controlled by host plant quality and host symbionts, such as plant-associated micro-organisms. Synchronization of trophic levels is required to prevent insect herbivore (pest) outbreaks. In a common garden experiment, we simulated an earlier arrival time (~2 weeks) of the aphid Rhopalosiphum padi on its host grass Lolium perenne by enhancing the aphid abundance during the colonization period. L. perenne was either uninfected or infected with the endophytic fungus Epichloë festucae var. lolii. The plant symbiotic fungus produces insect deterring alkaloids within the host grass. Throughout the season, we tested the effects of enhanced aphid abundance in spring on aphid predators (top–down) and grass–endophyte (bottom–up) responses. Higher aphid population sizes earlier in the season lead to overall higher aphid abundances, as predator occurrence was independent of aphid abundances on the pots. Nonetheless, after predator occurrence, aphids were controlled within 2 weeks on all pots. Possible bottom–up control of aphids by increased endophyte concentrations occurred time delayed after high herbivore abundances. Endophyte-derived alkaloid concentrations were not significantly affected by enhanced aphid abundance but increased throughout the season. We conclude that phenology shifts in an herbivorous species can desynchronize predator–prey and plant–microorganism interactions and might enhance the probability of pest outbreaks with climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号