首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological invasions by insects that vector plant pathogens have altered the composition of natural and urban forests. Thousand cankers disease is a new, recent example and is caused by the complex of walnut twig beetle, Pityophthorus juglandis, and the fungus, Geosmithia morbida, on susceptible hosts, notably some Juglans spp. and Pterocarya spp. Host colonization by P. juglandis may be particularly important for disease development, but the beetle’s host range is not known. In the United States and Italy, this insect has expanded its geographic range by colonizing naïve hosts. The objective of this study was to characterize limits to, and variation within, the host range of P. juglandis and infer the extent to which hosts might constrain the geographic distribution of the insect. We examined colonization and reproduction by P. juglandis in no-choice laboratory experiments with 11 Juglans spp., one Pterocarya sp., and two Carya spp. over 2 years and found that all but the Carya spp. were hosts. Reproduction was generally greater on Juglans californica, J. hindsii, and J. nigra, than on J. ailantifolia, J. cathayensis, J. cinerea, J. major, J. mandshurica, J. microcarpa, or J. regia. Escape of an insect vector into populations of evolutionary-naïve hosts can facilitate rapid range expansion by the pest and massive mortality to hosts. Multi-continental plantings of suitable species may facilitate geographic range expansion of P. juglandis and place other, native Juglans spp. at risk.  相似文献   

2.
3.
The conservation of narrow endemic species relies on accurate information regarding their population structure. Juglans hopeiensis Hu (Ma walnut), found only in Hebei province, Beijing, and Tianjin, China, is a threatened tree species valued commercially for its nut and wood. Sequences of two maternally inherited mitochondrial markers and two maternally inherited chloroplast intergenic spacers, three nuclear DNA sequences, and allele sizes from 11 microsatellites were obtained from 108 individuals of J. hopeiensis, Juglans regia, and Juglans mandshurica. Haplotype networks were constructed using NETWORK. Genetic diversity, population differentiation, and analysis of molecular variance (AMOVA) were used to determine genetic structure. MEGA was used to construct phylogenetic trees. Genetic diversity of J. hopeiensis was moderate based on nuclear DNA, but low based on uniparentally inherited mitochondrial DNA and chloroplast DNA. Haplotype networks showed that J. hopeiensis haplotypes were different than haplotypes found in J. regia and J. mandshurica. Allelic variants in nuclear genes that were shared among J. hopeiensis populations were not found in J. regia or J. mandshurica. Sampled populations of J. hopeiensis showed clear genetic structure. The maximum parsimony (MP) tree showed J. hopeiensis to be distinct from J. mandshurica but threatened by hybridization with J. regia and J. mandshurica. J. hopeiensis populations are strongly differentiated from sympatric Juglans species, but they are threatened by small population sizes and hybridization.  相似文献   

4.
5.
6.

Background

Tsetse flies (Glossina sp.) refractory to trypanosome infection are currently being explored as potential tools to contribute in the control of human and animal African trypanosomiasis. One approach to disrupt trypanosome transmission by the tsetse fly vector involves the use of paratransgenesis, a technique that aims to reduce vector competence of disease vectors via genetic modification of their microbiota. An important prerequisite for developing paratransgenic tsetse flies is the stable repopulation of tsetse flies and their progeny with its genetically modified Sodalis symbiont without interfering with host fitness.

Results

In this study, we assessed by qPCR analysis the ability of a chromosomally GFP-tagged Sodalis (recSodalis) strain to efficiently colonize various tsetse tissues and its transmission to the next generation of offspring using different introduction approaches. When introduced in the adult stage of the fly via thoracic microinjection, recSodalis is maintained at high densities for at least 21 days. However, no vertical transmission to the offspring was observed. Oral administration of recSodalis did not lead to the colonization of either adult flies or their offspring. Finally, introduction of recSodalis via microinjection of third-instar larvae resulted in stably colonized adult tsetse flies. Moreover, the subsequent generations of offspring were also efficiently colonized with recSodalis. We show that proper colonization of the female reproductive tissues by recSodalis is an important determinant for vertical transmission.

Conclusions

Intralarval microinjection of recSodalis proves to be essential to achieve optimal colonization of flies with genetically modified Sodalis and its subsequent dissemination into the following generations of progeny. This study provides the proof-of-concept that Sodalis can be used to drive expression of exogenous transgenes in Glossina morsitans morsitans colonies representing a valuable contribution to the development of a paratransgenic tsetse fly based control strategy.
  相似文献   

7.
Mexico is one of the five largest producers of papaya worldwide, but losses caused by pathogens, mainly fungus, at the pre- and post-harvest stages are often more than 50% of the crop. Papaya anthracnose, caused by three different species of the Colletotrichum genus in Mexico, occupies a preponderant place in this problem. Although two of these species, C. gloeosporiodes and C. truncatum, have been characterized morphologically and genotypically, this has not occurred with C. magnum, the third species involved, about which there is very little information. Because of this, it is vital to know its genetic characterization, much more so considering that the studies carried out on the other two species reveal a wide genetic diversity, differences in pathogenicity and in the response to fungicides of the different strains characterized. In this work, Colletotrichum spp. isolates were collected at different papaya orchards in the south-southeast of Mexico. C. magnum isolates identified by species-specific primers were characterized by morphological and molecular approaches. Differences in colony characteristics resulted in five morphological groups. AP-PCR, DAMD and ISSR markers were found to be very efficient for revealing the interspecific variability of this species. The high genetic variability found in the accessions of C. magnum was linked to the geographical area where they were collected. Isolates from Chiapas State were the most variable, showing point mutations in the ITS1-ITS2 region. These results will enable a better phytosanitary management of anthracnose in papaya in this region of Mexico.  相似文献   

8.

Key message

Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency.

Abstract

Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.
  相似文献   

9.
Polyploid Prunus spinosa (2n = 4×) and P. insititia (2n = 6×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programmes. In Hungary, 17 cultivar candidates were selected from wild-growing populations including 10 P. spinosa, 4 P. insititia and three P. spinosa × P. domestica hybrids (2n = 5×). Their taxonomic classification was based on their phenotypic characteristics. Six simple sequence repeats (SSRs) and the multiallelic S-locus genotyping were used to characterize genetic variability and reliable identification of the tested accessions. A total of 98 SSR alleles were identified, which presents 19.5 average allele number per locus, and each of the 17 genotypes could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified. The complete and partial S-genotype was determined for 8 and 9 accessions, respectively. The identification of a cross-incompatible pair of cultivar candidates and several semi-compatible combinations help maximize fruit set in commercial orchards. Our results indicate that the S-allele pools of wild-growing P. spinosa and P. insititia are overlapping in Hungary. A phylogenetic and principal component analysis confirmed the high level of diversity and genetic differentiation present within the analysed genotypes and helped clarify doubtful taxonomic identities. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species. The analysed accessions represent huge genetic potential that can be exploited in commercial cultivation.  相似文献   

10.

Background

Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches.

Results

113 bacterial isolates were obtained from aerobic and anaerobic microorganisms originating from the gut of G. pallidipes. 16S rDNA of each isolate was PCR amplified and sequenced. The overall majority of identified bacteria belonged in descending order to the Firmicutes (86.6%), Actinobacteria (7.6%), Proteobacteria (5.5%)and Bacteroidetes (0.3%). Diversity of Firmicutes was found higher when enrichments and isolation were performed under anaerobic conditions than aerobic ones. Experiments conducted in the absence of oxygen (anaerobiosis) led to the isolation of bacteria pertaining to four phyla (83% Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes, whereas those conducted in the presence of oxygen (aerobiosis) led to the isolation of bacteria affiliated to two phyla only (90% Firmicutes and 10% Proteobacteria). Phylogenetic analyses placed these isolates into 11 genera namely Bacillus, Acinetobacter, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynobacterium, Curtobacterium, Vagococcus and Dietzia spp.which are known to be either facultative anaerobes, aerobes, or even microaerobes.

Conclusion

This study shows that G. pallidipes fly gut is an environmental reservoir for a vast number of bacterial species, which are likely to be important for ecological microbial well being of the fly and possibly on differing vectorial competence and refractoriness against AT epidemiology.
  相似文献   

11.
The ammonites of the genus Rarecostites (subfamily Parkinsoniinae) are studied from the lower part of the Upper Bajocian Parkinsonia parkinsoni Zone of the Kyafar River (Bolshoi Zelenchuk River Basin, Karachai-Cherkessia, Russia). The locality contains numerous microconch shells of R. subarietis (Wetzel). We follow de Grossouvre (1919) in considering the names R. acris (Wetzel) and R. arietis (Wetzel) to be subjective synonyms of R. subarietis and, thus, the standard Acris should be replaced by the Subarietis Subzone. The lower part of the section also contains numerous microconchs of R. sherstyukovi sp. nov. and, less commonly, macroconchs of R. kyafarensis sp. nov. The phylogeny of Rarecostites species is reconstructed; the above species are described and figured and the sherstyukovi and subarietis faunal horizons are established.  相似文献   

12.
The red palm mite, Raoiella indica (Acari: Tenuipalpidae), is an important pest of palms (Arecaceae) and other species within the Zingiberaceae, Musaceae and Strelitziaceae families. Raoiella indica was discovered in the USA (Palm Beach and Broward counties, Florida) late in 2007, and it subsequently spread to other Florida counties. The predatory mite Amblyseius largoensis (Acari: Phytoseiidae) has been found associated with R. indica in Florida. In order to verify whether A. largoensis can develop and reproduce when feeding exclusively on R. indica, the biology of this predator was evaluated on various food sources, including R. indica. Five diets [R. indica, Tetranychus gloveri¸ Aonidiella orientalis, Nipaecocus nipae, oak (Quercus virginiana) pollen] and a no-food control were tested to determine the predators’ development, survivorship, oviposition rate, sex ratio and longevity at 26.5 ± 1°C, 70 ± 5% RH and a 12:12 L:D photophase. Amblyseius largoensis was able to complete its life cycle and reproduce when fed exclusively on R. indica. The development of immature stages of A. largoensis was faster and fecundity and survivorship were higher when fed on R. indica or T. gloveri compared to the other food sources. The intrinsic rate of natural increase of A. largoensis was significantly higher when fed on R. indica than on other diets. These results suggest that, despite earlier assessments, A. largoensis can play a role in controlling R. indica.  相似文献   

13.
Metacercariae of two species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) were subjected to morphological and molecular studies: P. brevicaudatum (von Nordmann, 1832) from Gasterosteus aculeatus (L.) (Gasterosteiformes: Gasterosteidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Perca fluviatilis L. (Perciformes: Percidae), Czech Republic (morphology, cox1, ITS1-5.8S-ITS2 and 28S); and P. centrarchi Hoffman, 1958 from Lepomis gibbosus (L.) (Perciformes: Centrarchidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Slovakia (cox1 and ITS1-5.8S-ITS2). In addition, cercariae of P. cuticola (von Nordmann, 1832) from Planorbis planorbis (L.) (Mollusca: Planorbidae), Lithuania (morphology and cox1) and metacercariae of Ornithodiplostomum scardinii (Schulman in Dubinin, 1952) from Scardinius erythrophthalmus (L.) (Cypriniformes: Cyprinidae), Czech Republic, were examined (morphology, cox1, ITS1-5.8S-ITS2 and 28S). These represent the first molecular data for species of Posthodiplostomum and Ornithodiplostomum Dubois, 1936 from the Palaearctic. Phylogenetic analyses based on cox1 and ITS1-5.8S-ITS2, using O. scardinii as the outgroup and including the three newly-sequenced Posthodiplostomum spp. from Europe and eight published unidentified (presumably species-level) lineages of Posthodiplostomum from Canada confirmed the distinct status of the three European species (contrary to the generally accepted opinion that only P. brevicaudatum and P. cuticola occur in the Palaearctic). The subspecies Posthodiplostomum minimum centrarchi Hoffmann, 1958, originally described from North America, is elevated to the species level as Posthodiplostomum centrarchi Hoffman, 1958. The undescribed “Posthodiplostomum sp. 3” of Locke et al. (2010) from centrarchid fishes in Canada has identical sequences with the European isolates of P. centrarchi and is recognised as belonging to the same species. The latter parasite, occurring in the alien pumpkinseed sunfish Lepomis gibbosus in Europe, is also supposed to be alien for this continent. It is speculated that it colonised Europe long ago and is currently widespread (recorded in Bulgaria, Slovakia and Spain); based on the cox1 sequence of an adult digenean isolate from the Ebro Delta, Spain, only the grey heron (Ardea cinerea L.) (Ciconiiformes: Ardeidae) is known to be its definitive host in Europe.  相似文献   

14.
In Utricularia, the flower spur is a nectary and in this organ, nectar is produced and stored. This study aimed to examine the structure of the nectary trichomes in four Utricularia species (Utricularia vulgaris L., U. australis R.Br., U. bremii Heer and U. foliosa L.) from the generic section Utricularia. We have investigated whether species with different spur morphology had similar spur anatomy and nectary trichome structure. In Utricularia flowers, nectar is produced by spur capitate trichomes (sessile or stalked). Our results showed that regardless of the various spur morphology, trichomes have similar architecture and ultrastructure. Head cells of these trichomes are transfer cells with an eccrine nectar secretion. Examined species differed in the micromorphology of papillae in spurs. The fly Eristalis tenax was found to be a pollinator of U. vulgaris. Small Halictidae bees seem to be pollinators of U. foliosa.  相似文献   

15.
Cortinarius is one of the most species-rich genera of mushroom-forming fungi. Based on phylogenetic and morphological evidence, Cortinarius, sect. Riederi, is introduced at sectional level (= subsect. Riederi sensu Brandrud & Melot). The taxonomy, phylogeny, ecology and distribution of not only mainly European but also including some North American taxa of this section are treated, which includes nine species and two varieties. Of these, three taxa are described as new (C. burlinghamiae, C. pallidoriederi and C. argenteolilacinus var. dovrensis). The sect. Riederi species possess morphological features similar to Phlegmacium group(s) and forms a phylogenetically isolated lineage, with no supported affinity to other phlegmacioid groups. Three taxa are known from both Europe and North America, two species are known only from North America and five only from Europe. Altogether, eight of the ten taxa are associated with conifers or northern (boreal-subalpine) deciduous trees (Betula spp.). Only two species occur in more temperate forests (Fagus forests), and no species have so far been found in thermophilous Quercus forests  相似文献   

16.
The regulation of the Rhodobacter sphaeroides lexA gene has been analyzed using both gel-mobility experiments and lacZ gene fusions. PCR-mediated mutagenesis demonstrated that the second GAAC motif in the sequence GAACN7GAACN7GAAC located upstream of the R. sphaeroides lexA gene is absolutely necessary for its DNA damage-mediated induction. Moreover, mutagenesis of either the first or the third GAAC motif in this sequence reduced, but did not abolish, the inducibility of the R. sphaeroides lexA gene. A R. sphaeroides lexA-defective (Def) mutant has also been constructed by replacing the active lexA gene with an inactivated gene copy constructed in vitro. Crude extracts of the R. sphaeroides lexA(Def) strain are unable to form any protein-DNA complex when added to the wild-type lexA promoter of R. sphaeroides. Likewise, the R. sphaeroides lexA(Def) cells constitutively express the recA and lexA genes. All these data clearly indicate that the lexA gene product is the negative regulator of the R. sphaeroides SOS response. Furthermore, the morphology, growth and viability of R. sphaeroides lexA(Def) cultures do not show any significant change relative to those of the wild-type strain. Hence, R. sphaeroides is so far the only bacterial species whose viability is known not to be affected by the presence of a lexA(Def) mutation.  相似文献   

17.
As an initial contribution to understanding the adaptive value of behavioral and life-history strategies, the life cycle and mating behavior of an unstudied species of tephritid fruit fly in the genus Rhagoletis are characterized for the first time. Over a 9-month fruiting period, a small proportion of Solanum appendiculatum Dunal (< 10 %) was found to be infested with a single larva of Rhagoletis solanophaga (Hernández & Frías). The average duration of R. solanophaga lifecycle (c.a. 140 days from egg laying to death of adults) exceeded the three month fruitless period. Additionally, R. solanophaga is capable of exploiting Solanaceous plants in at least two genera. These features could have selected for a non-diapausing species of Rhagoletis, a genus where most species are univoltine. Nevertheless, some individuals in the population became dormant. As other members of the genus, R. solanophaga exhibited a resource defense mating system with forced copulations and multiple mating. Both males and females could be highly promiscuous and individual mating success exhibited a wide range of outcomes. Regardless of mating success, mated females stored similar amounts of sperm in two spherical spermathecae. Long copulations were observed, perhaps functioning as a form of mate guarding with probable disadvantages for females. We outline hypotheses and opportunities for future comparative studies examining sperm competition and mate guarding.  相似文献   

18.
The R1 gene for resistance to oomycete Phytophthora infestans (Mont.) de Bary, the causal agent of late blight disease of potato (Solanum tuberosum L.), was initially identified in S. demissum and potato varieties bred by introgressing the S. demissum germplasm. Later a sequence characterized amplified region (SCAR) marker R1-1205 of this gene was also found in S. stoloniferum and S. polytrichon. Here we describe the full-length R1 sequence cloned from S. stoloniferum. This sequence is translatable, and this evidence of structural gene integrity is reinforced by functional characterization of the S. stoloniferum R1 gene in an effectoromics experiment. When screened across a series of S. demissum and S. stoloniferum accessions, the R1 sequences differed by several single nucleotide polymorphisms and an indel; this indel served the basis for constructing SCAR markers R1-517 and R1-513 that reliably discerned two R1 orthologs. The demissum-specific marker R1-517 was found in all S. demissum accessions under study; it was also present in many demissum-derived potato varieties and hybrids. The stoloniferum-specific marker R1-513 was found in 27% of S. stoloniferum and S. polytrichon accessions; however, we failed to discern this marker in the genotypes of cultivated potato listing S. stoloniferum in their pedigrees. Most probably, such absence of R1-513 is best explained by an opportunistic breeding history of stoloniferum-derived founder lines, which were employed first and foremost in breeding for resistance to potato virus Y: eventually, these founder lines are devoid of the R1 gene.  相似文献   

19.
The shore fly, Scatella stagnalis (Fallén) (Diptera: Ephydridae) is an important insect pest of greenhouse crops. We evaluated two different Spanish isolates of entomopathogenic nematodes, Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) and Steinernema arenarium (Artyukhovsky) (Rhabditida: Steinernematidae), and two commercially available strains, Steinernema feltiae (Nemaplus®) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae) (Nematop®) against shore flies. In tests conducted in 24-well plate filter paper applied at 5, 11, 22, 44 and 88 nematodes per larva, all nematodes produced significant shore fly larval mortality. The lowest concentration tested was enough to obtain high larval mortality (65.2–87.0%). The nematodes Steinernema feltiae and Steinernema arenarium, which parasitized the shore fly larvae faster, also penetrated in higher number in the shore fly larva (4.6–8.8% penetration rate). In bioassays conducted in algae, Steinernema feltiae, applied at 50 nematodes/cm2, caused highest (100%) and Steinernema arenarium lowest shore fly mortality (94%). Our results suggest that entomopathogenic nematodes appear feasible for controlling shore flies but further tests are needed to determine their efficacy in the field.  相似文献   

20.
Conventional wisdom states Cannabis sativa originated in Asia and its dispersal to Europe depended upon human transport. Various Neolithic or Bronze age groups have been named as pioneer cultivators. These theses were tested by examining fossil pollen studies (FPSs), obtained from the European Pollen Database. Many FPSs report Cannabis or Humulus (C/H) with collective names (e.g. Cannabis/Humulus or Cannabaceae). To dissect these aggregate data, we used ecological proxies to differentiate C/H pollen, as follows: unknown C/H pollen that appeared in a pollen assemblage suggestive of steppe (Poaceae, Artemisia, Chenopodiaceae) we interpreted as wild-type Cannabis. C/H pollen in a mesophytic forest assemblage (Alnus, Salix, Populus) we interpreted as Humulus. C/H pollen curves that upsurged and appeared de novo alongside crop pollen grains we interpreted as cultivated hemp. FPSs were mapped and compared to the territories of archaeological cultures. We analysed 479 FPSs from the Holocene/Late Glacial, plus 36 FPSs from older strata. The results showed C/H pollen consistent with wild-type C. sativa in steppe and dry tundra landscapes throughout Europe during the early Holocene, Late Glacial, and previous glaciations. During the warm and wet Holocene Climactic Optimum, forests replaced steppe, and Humulus dominated. Cannabis retreated to steppe refugia. C/H pollen consistent with cultivated hemp first appeared in the Pontic-Caspian steppe refugium. GIS mapping linked cultivation with the Copper age Varna/Gumelni?a culture, and the Bronze age Yamnaya and Terramara cultures. An Iron age steppe culture, the Scythians, likely introduced hemp cultivation to Celtic and Proto-Slavic cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号