首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.  相似文献   

2.
Antibody specific to the 12,200-dalton spore coat protein of Bacillus subtilis was used to detect the synthesis of cross-reacting material during sporulation. Cross-reacting protein was first detected by immunoprecipitation after 4 h of development and represented at least 1 to 2% of the total soluble protein synthesis at 5.5 h. A polypeptide of 21,000 daltons was detected in immunoprecipitates by gel electrophoresis. This polypeptide did not accumulate in sporulating cells and was rapidly turned over at the time of coat deposition. In contrast, a 32,000-dalton polypeptide reacted with antibody when unlabeled cell protein was denatured with sodium dodecyl sulfate, separated by gel electrophoresis, and transferred to nitrocellulose paper. This polypeptide was not detected during cell growth or the first 3.5 h of development but was found to accumulate in sporulating cells at 5.5 h. The lack of detection of this polypeptide by immunoprecipitation of undenatured protein indicates that the antigenic sites which cross-reacted with antibody to the 12,200-dalton protein sequence were not exposed unless the molecular conformation was altered. The 32,000-dalton protein may be a primary translation product which is proteolytically processed into mature spore coat protein via a 21,000-dalton intermediate.  相似文献   

3.
J Segall  R Losick 《Cell》1977,11(4):751-761
  相似文献   

4.
A sporulation-induced sigma-like regulatory protein from B. subtilis   总被引:45,自引:0,他引:45  
W G Haldenwang  N Lang  R Losick 《Cell》1981,23(2):615-624
  相似文献   

5.
We screened various Bacillus species producing transglutaminase (TGase), measured as labeled putrescine incorporated into N,N-dimethylcasein. As a result, we detected TGase activity in sporulating cells of B. subtilis, B. cereus, B. alvei and B. aneurinolyticus, and found TGase activity related to sporulation. TGase activity of Bacillus subtilis was detected in lysozyme-treated sporulating cells during late sporulation, but not in cells without lysozyme treatment or the supernatant of the culture broth. TGase was found to be localized on spores. TGase was preliminarily purified by gel filtration chromatography for characterization. Its activity was eluted in the fractions indicating a molecular weight of approximately 23 kDa. TGase could cross-link and polymerize a certain protein. The enzyme was strongly suggested to form epsilon-(gamma-glutamyl)lysine bonds, which were detected in the spore coat proteins of B. subtilis. The activity was Ca(2+)-independent like the TGases derived from Streptoverticillium or some plants. It is suggested that TGase is expressed during sporulation and plays a role in the assembly of the spore coat proteins of the genus Bacillus.  相似文献   

6.
7.
Spores formed by wild-type Bacillus subtilis are encased in a multilayered protein structure (called the coat) formed by the ordered assembly of over 30 polypeptides. One polypeptide (CotB) is a surface-exposed coat component that has been used as a vehicle for the display of heterologous antigens at the spore surface. The cotB gene was initially identified by reverse genetics as encoding an abundant coat component. cotB is predicted to code for a 43-kDa polypeptide, but the form that prevails in the spore coat has a molecular mass of about 66 kDa (herein designated CotB-66). Here we show that in good agreement with its predicted size, expression of cotB in Escherichia coli results in the accumulation of a 46-kDa protein (CotB-46). Expression of cotB in sporulating cells of B. subtilis also results in a 46-kDa polypeptide which appears to be rapidly converted into CotB-66. These results suggest that soon after synthesis, CotB undergoes a posttranslational modification. Assembly of CotB-66 has been shown to depend on expression of both the cotH and cotG loci. We found that CotB-46 is the predominant form found in extracts prepared from sporulating cells or in spore coat preparations of cotH or cotG mutants. Therefore, both cotH and cotG are required for the efficient conversion of CotB-46 into CotB-66 but are dispensable for the association of CotB-46 with the spore coat. We also show that CotG does not accumulate in sporulating cells of a cotH mutant, suggesting that CotH (or a CotH-controlled factor) stabilizes the otherwise unstable CotG. Thus, the need for CotH for formation of CotB-66 results in part from its role in the stabilization of CotG. We also found that CotB-46 is present in complexes with CotG at the time when formation of CotB-66 is detected. Moreover, using a yeast two-hybrid system, we found evidence that CotB directly interacts with CotG and that both CotB and CotG self-interact. We suggest that an interaction between CotG and CotB is required for the formation of CotB-66, which may represent a multimeric form of CotB.  相似文献   

8.
9.
10.
11.
The Bacillus subtilis spore coat consists of three morphological layers: a diffuse undercoat, a striated inner coat and a densely staining outer coat. These layers are comprised of at least 15 polypeptides and the absence of one in particular, CotE, had extensive pleiotropic effects. Only a partial inner coat was present on the spores which were lysozyme-sensitive. The initial rate of germination of these spores was the same as for the wild type but the overall optical density decrease was greater apparently due to the loss of the incomplete spore coat from germinated spores. Suppressors of the lysozyme-sensitive phenotype had some outer coat proteins restored as well as some novel minor polypeptides. These spores still lacked an undercoat and germinated as did those produced by the cotE deletion strain. The CotE protein was synthesized starting at stage II-III of sporulation, long before the appearance of the coat on spores at stage IV-V. Despite its apparent hydrophilic properties, this protein was present in the crude insoluble fraction from sporulating cells. CotE was not solubilized by high or low ionic strength buffers not by detergents used for the solubilization of membrane proteins. Either 8 M urea or 6 M guanidine HC1 was required and dialysis against a low ionic strength buffer resulted in aggregation into long, sticky filaments. Both the CotE and CotT spore coat proteins appeared to be necessary for the formation of these filaments. Each of these proteins contains sequences related to a bovine intermediate filament protein so their interaction could result in an analogous structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Two structurally similar compounds were found to inhibit sporulation in Bacillus subtilis 168. A dye, acridine orange, and an antischizophrenic drug, promethazine, blocked spore formation at concentrations subinhibitory to vegetative growth, while allowing synthesis of serine protease, antibiotic, and certain catabolite-repressed enzymes. The sporulation process was sensitive to promethazine through T2, whereas acridine orange was inhibitory until T4. The drug-treated cells were able to support the replication of phages phie and phi29, although the lytic cycles were altered slightly. The selective inhibition of sporulation by these compounds may be related to the affinity of some sporulation-specific genes to intercalating compounds.  相似文献   

13.
Endospore formation is a specific property found within bacteria belonging to the Gram-type-positive low G+C mol% branch (Firmicutes) of a phylogenetic tree based on 16S rRNA genes. Within the Gram-type-positive bacteria, endospore-formers and species without observed spore formation are widely intermingled. In the present study, a previously reported experimental method (PCR and Southern hybridization assays) and analysis of genome sequences from 52 bacteria and archaea representing sporulating, non-spore-forming, and asporogenic species were used to distinguish non-spore-forming (void of the majority of sporulation-specific genes) from asporogenic (contain the majority of sporulation-specific genes) bacteria. Several sporulating species lacked sequences similar to those of Bacillus subtilis sporulation genes. For some of the genes thought to be sporulation specific, sequences with weak similarity were identified in non-spore-forming bacteria outside of the Gram-type-positive phylogenetic branch and in archaea, rendering these genes unsuitable for the intended classification into sporulating, asporogenic, and non-spore-forming species. The obtained results raise questions regarding the evolution of sporulation among the Firmicutes.This paper is dedicated to Prof. H.G. Schlegel in honor of his 80th birthday.  相似文献   

14.
15.
The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.  相似文献   

16.
Bacterial spores are protected from the environment by a proteinaceous coat and a layer of specialized peptidoglycan called the cortex. In Bacillus subtilis, the attachment of the coat to the spore surface and the synthesis of the cortex both depend on the spore protein SpoIVA. To identify functionally important amino acids of SpoIVA, we generated and characterized strains bearing random point mutations of spoIVA that result in defects in coat and cortex formation. One mutant resembles the null mutant, as sporulating cells of this strain lack the cortex and the coat forms a swirl in the surrounding cytoplasm instead of a shell around the spore. We identified a second class of six mutants with a partial defect in spore assembly. In sporulating cells of these strains, we frequently observed swirls of mislocalized coat in addition to a coat surrounding the spore, in the same cell. Using immunofluorescence microscopy, we found that in two of these mutants, SpoIVA fails to localize to the spore, whereas in the remaining strains, localization is largely normal. These mutations identify amino acids involved in targeting of SpoIVA to the spore and in attachment of the coat. We also isolated a large set of mutants producing spores that are unable to maintain the dehydrated state. Analysis of one mutant in this class suggests that spores of this strain accumulate reduced levels of peptidoglycan with an altered structure.  相似文献   

17.
Bacillus subtilis FtsY is a homolog of the alpha-subunit of mammalian signal recognition particle (SRP) receptor, and is essential for protein translocation and vegetative cell growth. An FtsY conditional null mutant (strain ISR39) can express ftsY during the vegetative stage but not during spore formation. Spores of ISR39 have the same resistance to heat and chloroform as the wild-type, while their resistance to lysozyme is reduced. Electron microscopy showed that the outer coat of spores was incompletely assembled. The coat protein profile of the ftsY mutant spores was different from that of wild-type spores. The amounts of CotA, and CotE were reduced in spore coat proteins of ftsY mutant spores and the molecular mass of CotB was reduced. In addition, CotA, CotB, and CotE are present in normal form at T(8) of sporulation in ftsY mutant cells. These results suggest that FtsY has a pivotal role in assembling coat proteins onto the coat layer during spore morphogenesis.  相似文献   

18.
19.
Properties of the Bacillus subtilis spore coat.   总被引:15,自引:10,他引:5       下载免费PDF全文
About 70% of the protein in isolated Bacillus subtilis spore coats was solubilized by treatment with a combination of reducing and denaturing agents at alkaline pH. The residue, consisting primarily of protein, was insoluble in a variety of reagents. The soluble proteins were resolved into at least seven bands by sodium dodecyl sulfate gel electrophoresis. About one-half of the total was four proteins of 8,000 to 12,000 daltons. These were relatively tyrosine rich, and one was a glycoprotein. There was also a cluster of proteins of about 40,000 daltons and two or three in the 20,000- to 25,000-dalton range. The insoluble fraction had an amino acid composition and N-terminal pattern of amino acids very similar to those of the soluble coat proteins. A major difference was the presence of considerable dityrosine in performic acid-oxidized preparations of insoluble coats. Coat antigen including a 60,000-dalton protein not present in extracts of mature spores was detected in extracts of sporulating cells by immunoprecipitation. This large antigen turned over in a pulse-chase experiment. Antibodies to either the array of 8,000- to 12,000-dalton coat polypeptides or to the larger coat proteins reacted with this 60,000-dalton species, suggesting a common precursor for many of the mature coat polypeptides. Spore coats seem to be assembled by processing of proteins and by secondary modifications including perhaps dityrosine formation for cross-linking.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号