首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal histidine kinases (HKs) have been implicated in different processes, such as the osmostress response, hyphal development, sensitivity to fungicides and virulence. Members of HK class III are known to signal through the HOG mitogen‐activated protein kinase (MAPK), but possible interactions with other MAPKs have not been explored. In this study, we have characterized fhk1, encoding a putative class III HK from the soil‐borne vascular wilt pathogen Fusarium oxysporum. Inactivation of fhk1 resulted in resistance to phenylpyrrole and dicarboximide fungicides, as well as increased sensitivity to hyperosmotic stress and menadione‐induced oxidative stress. The osmosensitivity of Δfhk1 mutants was associated with a striking and previously unreported change in colony morphology. The Δfhk1 strains showed a significant decrease in virulence on tomato plants. Epistatic analysis between Fhk1 and the Fmk1 MAPK cascade indicated that Fhk1 does not function upstream of Fmk1, but that the two pathways may interact to control the response to menadione‐induced oxidative stress.  相似文献   

2.
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)‐box‐containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)‐based gene silencing was employed to alter the expression of SsFkh1. RNA‐silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis‐related laccase genes and a polyketide synthase‐encoding gene were significantly down‐regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi‐silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.  相似文献   

3.
We isolated and characterized a histidine kinase gene (HIK1) from the rice blast fungus, Pyricularia oryzae (Magnaporthe grisea). The deduced amino acid sequence of HIK1 showed highest similarity (85.7%) to a hybrid-type histidine kinase, Os-1/Nik-1 of Neurospora crassa. Disruption of HIK1 caused no defect in cell growth on normal media and in pathogenicity to rice plants. The Deltahik1 strain acquired resistance to three groups of fungicides (phenylpyrroles, dicarboximides, and aromatic hydrocarbons) similar to os-1 mutants of N. crassa. The Deltahik1 strain showed increased sensitivity to high concentrations of sugars although its salt sensitivity was not elevated, suggesting that the rice blast fungus can distinguish osmostresses caused by high sugar concentrations and high salt concentrations. In contrast, os-1 mutants of N. crassa are sensitive to high concentrations of both salts and sugars. These findings suggest that P. oryzae and N. crassa partially differ in their os (osmosensitive) signal transduction pathway.  相似文献   

4.
Sclerotinia sclerotiorum is a filamentous ascomycete phytopathogen able to infect an extremely wide range of cultivated plants. Our previous studies have shown that increases in cAMP levels result in the impairment of the development of the sclerotium, a highly differentiated structure important in the disease cycle of this fungus. cAMP also inhibits the activation of a S. sclerotiorum mitogen-activated protein kinase (MAPK), which we have previously shown to be required for sclerotial maturation; thus cAMP-mediated sclerotial inhibition is modulated through MAPK. However, the mechanism(s) by which cAMP inhibits MAPK remains unclear. Here we demonstrate that a protein kinase A (PKA)-independent signalling pathway probably mediates MAPK inhibition by cAMP. Expression of a dominant negative form of Ras, an upstream activator of the MAPK pathway, also inhibited sclerotial development and MAPK activation, suggesting that a conserved Ras/MAPK pathway is required for sclerotial development. Evidence from bacterial toxins that specifically inhibit the activity of small GTPases, suggested that Rap-1 or Ras is involved in cAMP action. The Rap-1 inhibitor, GGTI-298, restored MAPK activation in the presence of cAMP, further suggesting that Rap-1 is responsible for cAMP-dependent MAPK inhibition. Importantly, inhibition of Rap-1 is able to restore sclerotial development blocked by cAMP. Our results suggest a novel mechanism involving the requirement of Ras/MAPK pathway for sclerotial development that is negatively regulated by a PKA-independent cAMP signalling pathway. Cross-talk between these two pathways is mediated by Rap-1.  相似文献   

5.
The devastating plant pathogen Sclerotinia sclerotiorum produces copious (up to 50 mM) amounts of oxalic acid, which, for over a quarter century, has been claimed as the pathogenicity determinant based on UV‐induced mutants that concomitantly lost oxalate production and pathogenicity. Such a claim was made without fulfilling the molecular Koch's postulates because the UV mutants are genetically undefined and harbour a developmental defect in sclerotial production. Here, we generated oxalate‐minus mutants of S. sclerotiorum using two independent mutagenesis techniques, and tested the resulting mutants for growth at different pHs and for pathogenicity on four host plants. The oxalate‐minus mutants accumulated fumaric acid, produced functional sclerotia and have reduced ability to acidify the environment. The oxalate‐minus mutants retained pathogenicity on plants, but their virulence varied depending on the pH and buffering capacity of host tissue. Acidifying the host tissue enhanced virulence of the oxalate‐minus mutants, whereas supplementing with oxalate did not. These results suggest that it is low pH, not oxalic acid itself, that establishes the optimum conditions for growth, reproduction, pathogenicity and virulence expression of S. sclerotiorum. Exonerating oxalic acid as the primary pathogenicity determinant will stimulate research into identifying additional candidates as pathogenicity factors towards better understanding and managing Sclerotinia diseases.  相似文献   

6.
The fungus Sclerotinia sclerotiorum is a necrotrophic plant pathogen causing significant damage on a broad range of crops. This fungus produces sclerotia that serve as the long‐term survival structures in the life cycle and the primary inoculum in the disease cycle. Melanin plays an important role in protecting mycelia and sclerotia from ultraviolet radiation and other adverse environmental conditions. In this study, two genes, SCD1 encoding a scytalone dehydratase and THR1 encoding a trihydroxynaphthalene reductase, were disrupted by target gene replacement, and their roles in mycelial growth, sclerotial development and fungal pathogenicity were investigated. Phylogenetic analyses indicated that the deduced amino acid sequences of SCD1 and THR1 were similar to the orthologues of Botrytis cinerea. Expression of SCD1 was at higher levels in sclerotia relative to mycelia. THR1 was expressed at similar levels in mycelia and sclerotia at early stages, but was up‐regulated in sclerotia at the maturation stage. Disruption of SCD1 or THR1 did not change the pathogenicity of the fungus, but resulted in slower radial growth, less biomass, wider angled hyphal branches, impaired sclerotial development and decreased resistance to ultraviolet light.  相似文献   

7.
8.
9.
10.
Sclerotinia sclerotiorum is a cosmopolitan, filamentous, fungal pathogen that can cause serious disease in many kinds of crops. Alternative oxidase is the terminal oxidase of the alternative mitochondrial respiratory pathway in fungi and higher plants. We report the presence of this alternative pathway respiration and demonstrate its expression in two isolates of S. sclerotiorum under unstressed, normal culture conditions. Application of salicylhydroxamic acid, a specific inhibitor of alternative oxidase, severely inhibited the mycelial growth of S. sclerotiorum both on potato dextrose agar plates and in liquid culture media. Inhibition of alternative oxidase could influence the growth pattern of S. sclerotiorum, as salicylhydroxamic acid treatment induced obvious aerial mycelia growing on potato dextrose agar plates. Under the treatment with salicylhydroxamic acid, S. sclerotiorum formed sclerotia much more slowly than the control. Treatment with hydrogen peroxide in millimolar concentrations greatly decreased the growth rate of mycelia and delayed the formation of sclerotia in both tested S. sclerotiorum isolates. As well, this treatment obviously increased their alternative pathway respiration and the levels of both mRNA and protein of the alternative oxidase. These results indicate that alternative oxidase is involved in the regulation of growth, development, and resistance to oxidative stress of S. sclerotiorum.  相似文献   

11.
Response regulator (RR) proteins are core elements of the high-osmolarity glycerol (HOG) pathway, which plays an important role in the adaptation of fungi to a variety of environmental stresses. In this study, we constructed deletion mutants of two putative RR genes, FgRRG-1 and FgRRG-2, which are orthologues of Neurospora crassa RRG-1 and RRG-2, respectively. The FgRRG-1 deletion mutant (ΔFgRrg1-6) showed increased sensitivity to osmotic stress mediated by NaCl, KCl, sorbitol or glucose, and to metal cations Li(+) , Ca(2+) and Mg(2+) . The mutant, however, was more resistant than the parent isolate to dicarboximide and phenylpyrrole fungicides. Inoculation tests showed that the mutant exhibited decreased virulence on wheat heads. Quantitative real-time polymerase chain reaction assays indicated that the expression of FgOS-2, the putative downstream gene of FgRRG-1, was decreased significantly in ΔFgRrg1-6. All of the defects were restored by genetic complementation of ΔFgRrg1-6 with the wild-type FgRRG-1 gene. Different from the FgRRG-1 deletion mutant, FgRRG-2 deletion mutants were morphologically indistinguishable from the wild-type progenitor in virulence and in sensitivity to the dicarboximide fungicide iprodione and osmotic stresses. These results indicate that the RR FgRrg-1 of F. graminearum is involved in the osmotic stress response, pathogenicity and sensitivity to dicarboximide and phenylpyrrole fungicides and metal cations.  相似文献   

12.
Histidine kinases are important mediators for adaptation of bacteria and plants to environmental signals. Genome analyses of filamentous fungi have revealed the presence of a high number of potential hybrid histidine kinase (HK)-encoding genes; the role of most of these potential sensors is so far unclear, though some members of the class III histidine kinases were shown to be involved in osmostress responses. Here we present a functional analysis of cphk2 , a histidine kinase-encoding gene in the biotrophic grass pathogen Claviceps purpurea . The putative product of cphk2 (CpHK2) was shown to group within family X of fungal HKs and it had high homology to the oxidative stress sensors SpMAK2/3 of Schizosaccharomyces pombe . Analysis of a cphk2 deletion mutant indicated that this histidine kinase is involved in spore germination, sensitivity to oxidative stress and fungicide resistance. In addition, virulence of the D cphk2 mutant on rye was significantly reduced compared with the wild-type strain, even if the conidial titre was adjusted to the lower germination rate. This is the first report of a role for a class X histidine kinase in a filamentous fungus.  相似文献   

13.
Sclerotinia sclerotiorum infects host plant tissues by inducing necrosis to source nutrients needed for its establishment. Tissue necrosis results from an enhanced generation of reactive oxygen species (ROS) at the site of infection and apoptosis. Pathogens have evolved ROS scavenging mechanisms to withstand host‐induced oxidative damage. However, the genes associated with ROS scavenging pathways are yet to be fully investigated in S. sclerotiorum. We selected the S. sclerotiorum Thioredoxin1 gene (SsTrx1) for our investigations as its expression is significantly induced during S. sclerotiorum infection. RNA interference‐induced silencing of SsTrx1 in S. sclerotiorum affected the hyphal growth rate, mycelial morphology, and sclerotial development under in vitro conditions. These outcomes confirmed the involvement of SsTrx1 in promoting pathogenicity and oxidative stress tolerance of S. sclerotiorum. We next constructed an SsTrx1‐based host‐induced gene silencing (HIGS) vector and mobilized it into Arabidopsis thaliana (HIGS‐A) and Nicotiana benthamiana (HIGS‐N). The disease resistance analysis revealed significantly reduced pathogenicity and disease progression in the transformed genotypes as compared to the nontransformed and empty vector controls. The relative gene expression of SsTrx1 increased under oxidative stress. Taken together, our results show that normal expression of SsTrx1 is crucial for pathogenicity and oxidative stress tolerance of S. sclerotiorum.  相似文献   

14.
Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a worldwide distribution. Cell wall‐degrading enzymes and oxalic acid are important to the virulence of this pathogen. Here, we report a novel secretory protein, Ss‐Rhs1, which is essential for the virulence of S. sclerotiorum. Ss‐Rhs1 is believed to contain a typical signal peptide at the N‐terminal and eight rearrangement hotspot (Rhs) repeats. Ss‐Rhs1 exhibited a high level of expression at the initial stage of sclerotial development, as well as during the hyphal infection process. Targeted silencing of Ss‐Rhs1 resulted in abnormal colony morphology and reduced virulence on host plants. Microscopic observations indicated that Ss‐Rhs1‐silenced strains exhibited reduced efficiency in compound appressoria formation.  相似文献   

15.
16.
Bacteriophage endolysins are bacterial cell wall degrading enzymes whose potential to fight bacterial infections has been intensively studied. Endolysins from Gram‐positive systems are typically described as monomeric and as having a modular structure consisting of one or two N‐terminal catalytic domains (CDs) linked to a C‐terminal region responsible for cell wall binding (CWB). We show here that expression of the endolysin gene lys170 of the enterococcal phage F170/08 results in two products, the expected full length endolysin (Lys170FL) and a C‐terminal fragment corresponding to the CWB domain (CWB170). The latter is produced from an in‐frame, alternative translation start site. Both polypeptides interact to form the fully active endolysin. Biochemical data strongly support a model where Lys170 is made of one monomer of Lys170FL associated with up to three CWB170 subunits, which are responsible for efficient endolysin binding to its substrate. Bioinformatics analysis indicates that similar secondary translation start signals may be used to produce and add independent CWB170‐like subunits to different enzymatic specificities. The particular configuration of endolysin Lys170 uncovers a new mode of increasing the number of CWB motifs associated to CD modules, as an alternative to the tandem repetition typically found in monomeric cell wall hydrolases.  相似文献   

17.
PhyR is a hybrid stress regulator conserved in α‐proteobacteria that contains an N‐terminal σ‐like (SL) domain and a C‐terminal receiver domain. Phosphorylation of the receiver domain is known to promote binding of the SL domain to an anti‐σ factor. PhyR thus functions as an anti‐anti‐σ factor in its phosphorylated state. We present genetic evidence that Caulobacter crescentus PhyR is a phosphorylation‐dependent stress regulator that functions in the same pathway as σT and its anti‐σ factor, NepR. Additionally, we report the X‐ray crystal structure of PhyR at 1.25 Å resolution, which provides insight into the mechanism of anti‐anti‐σ regulation. Direct intramolecular contact between the PhyR receiver and SL domains spans regions σ2 and σ4, likely serving to stabilize the SL domain in a closed conformation. The molecular surface of the receiver domain contacting the SL domain is the structural equivalent of α4‐β5‐α5, which is known to undergo dynamic conformational change upon phosphorylation in a diverse range of receiver proteins. We propose a structural model of PhyR regulation in which receiver phosphorylation destabilizes the intramolecular interaction between SL and receiver domains, thereby permitting regions σ2 and σ4 in the SL domain to open about a flexible connector loop and bind anti‐σ factor.  相似文献   

18.
19.
Two-component systems, consisting of proteins with histidine kinase and/or response regulator domains, regulate environmental responses in bacteria, Archaea, fungi, slime molds, and plants. Here, we characterize RRG-1, a response regulator protein from the filamentous fungus Neurospora crassa. The cell lysis phenotype of Δrrg-1 mutants is reminiscent of osmotic-sensitive (os) mutants, including nik-1/os-1 (a histidine kinase) and strains defective in components of a mitogen-activated protein kinase (MAPK) pathway: os-4 (MAPK kinase kinase), os-5 (MAPK kinase), and os-2 (MAPK). Similar to os mutants, Δrrg-1 strains are sensitive to hyperosmotic conditions, and they are resistant to the fungicides fludioxonil and iprodione. Like os-5, os-4, and os-2 mutants, but in contrast to nik-1/os-1 strains, Δrrg-1 mutants do not produce female reproductive structures (protoperithecia) when nitrogen starved. OS-2-phosphate levels are elevated in wild-type cells exposed to NaCl or fludioxonil, but they are nearly undetectable in Δrrg-1 strains. OS-2-phosphate levels are also low in Δrrg-1, os-2, and os-4 mutants under nitrogen starvation. Analysis of the rrg-1D921N allele, mutated in the predicted phosphorylation site, provides support for phosphorylation-dependent and -independent functions for RRG-1. The data indicate that RRG-1 controls vegetative cell integrity, hyperosmotic sensitivity, fungicide resistance, and protoperithecial development through regulation of the OS-4/OS-5/OS-2 MAPK pathway.  相似文献   

20.
The majority of bacterial genomes encode a high number of two‐component systems controlling gene expression in response to a variety of different stimuli. The Gram‐positive soil bacterium Corynebacterium glutamicum contains two homologous two‐component systems (TCS) involved in the haem‐dependent regulation of gene expression. Whereas the HrrSA system is crucial for utilization of haem as an alternative iron source, ChrSA is required to cope with high toxic haem levels. In this study, we analysed the interaction of HrrSA and ChrSA in C. glutamicum. Growth of TCS mutant strains, in vitro phosphorylation assays and promoter assays of PhrtBA and PhmuO fused to eyfp revealed cross‐talk between both systems. Our studies further indicated that both kinases exhibit a dual function as kinase and phosphatase. Mutation of the conserved glutamine residue in the putative phosphatase motif DxxxQ of HrrS and ChrS resulted in a significantly increased activity of their respective target promoters (PhmuO and PhrtBA respectively). Remarkably, phosphatase activity of both kinases was shown to be specific only for their cognate response regulators. Altogether our data suggest the phosphatase activity of HrrS and ChrS as key mechanism to ensure pathway specificity and insulation of these two homologous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号