首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aromatic amine, 9-NH2-ellipticine, is a synthetic DNA intercalating derivative of the antitumor agent ellipticine, which breaks circular DNA containing apurinic sites. This breakage is inhibited when the apurinic (AP) sites are reduced. The concentration of 9-NH2-ellipticine required to get a significant effect (0.1 microM) is the lowest known among chemicals which induce the same breakage reaction. Comparison with the action of structurally related amines shows that the amino-indole structure is specific for AP sites. The ability of ellipticine derivatives to induce breakage in DNA containing apurinic sites is related to the nucleophile substituent in position 9. Two ellipticine derivatives with known antitumor activity, BD 40 and 9-OH-ellipticine, were able to break purified DNA at apurinic sites.  相似文献   

2.
Ellipticine has been shown previously to exhibit excellent in vitro antiplasmodial activity and in vivo antimalarial properties that are comparable to those of the control drug chloroquine in a mouse malaria model. Ellipticine derivatives and analogs exhibit antimalarial potential however only a few have been studied to date. Herein, ellipticine and a structural analog were isolated from Aspidosperma vargasii bark. A-ring brominated and nitrated ellipticine derivatives exhibit good in vitro inhibition of Plasmodium falciparum K1 and 3D7 strains. Several of the compounds were found not to be toxic to human fetal lung fibroblasts. 9-Nitroellipticine (IC50 = 0.55 μM) exhibits greater antiplasmodial activity than ellipticine. These results are further evidence of the antimalarial potential of ellipticine derivatives.  相似文献   

3.
Abstract

At high binding denstities acridine orange (AO) forms complexes with ds DNA which are insoluble in aqueous media. These complexes are characterized by high red- and minimal green-luminescence, 1:1 (dye/P) stoichiometry and resemble complexes of AO with ss nucleic acids. Formation of these complexes can be conveniently monitored by light scatter measurements. Light scattering properties of these complexes are believed to result from the condensation of nucleic acids induced by the cationic, intercalating ligands. The spectral and thermodynamic data provide evidence that AO (and other intercalating agents) induces denaturation of ds nucleic acids; the driving force of the denaturation is high affinity and cooperativity of binding of these ligands to ss nucleic acids. The denaturing effects of AO, adriamycin and ellipticine were confirmed by biochemical studies on accessibility of DNA bases (in complexes with these ligands) to the external probes. The denaturing properties of AO vary depending on the primary structure (sugar-and base-composition) of nucleic acids.  相似文献   

4.
1) The self-association of both caffeine (Cf) and 5'-adenosine monophosphate (AMP) in aqueous solution has been reinvestigated by 1H NMR. The self-association process is characterized by an isodesmic model. The apparent self-association constants of the vertical stacking process are KCf= (10.6 ± 1.0) M?1 and kamp = (1.67 ± 0.17) M?1. The arrangement of the monomeric units in the stacked aggregates is discussed in terms of isoshielding curves theoretically calculated by Giessner-Prettre and Pullman. Models are proposed which are consistent with these and further previous NMR data. 2) The interaction of Cf and AMP has been studied by ?1 H NMR. The apparent association constant of the complex Cf-AMP is KC-A = (7.3 ± 1.2) M?1.Two models of the mutual arrangement of AMP and Cf in the complex are proposed on the basis of the calculated isoshielding curves considering both ring current and local atomic diamagnetic anisotropy effects. 3) The interaction of Cf and poly(riboadenylate), (rA)n is indicated by a downfield shift of the H-8 line but an upfield shift of the H-2 line in the 1H NMR spectra of (rA)n. The concentration dependence of the 1H NMR shifts of both Cf and (rA)n can be explained by the existence of two binding mechanisms. We suggest (i) partial insertion of Cf between adjacent base residues of ordered single-stranded regions of (rA)n and (ii) outside binding of Cf in form of monomeric Cf as well as of self-associated aggregates. The complex geometry of insertion proposed on the basis of the calculated isoshielding curves is characterized by a stronger overlapping of the Cf ring and the H-2 proton of (rA)n as compared to the H-8 proton.  相似文献   

5.
In order to specifically direct cytotoxic agents against tumor cells bearing delta opioid receptors, the DNA intercalating agents ellipticine and 9-OH-ellipticine were coupled by quaternarization of the pyridine nitrogen to an enkephalin modified pentapeptide through a short chemical linker. The ellipticine ring of these conjugates was shown to intercalate into DNA, with DNA affinity constants close to those of the non-conjugated ellipticines. Despite the addition of a polycyclic ring to the C-terminal amino acid, the D-Ala2-D-Leu5-enkephalin-ellipticine conjugates bind to the opioid receptor from rat brain and NG 108-15 cells with an affinity constant close to 10(8) M-1. Other derivatives were synthesized as a control using a tripeptide which does not bind to the opioid receptor.  相似文献   

6.
RNF144A, an E3 ubiquitin ligase for DNA-dependent protein kinase catalytic subunit (DNA-PKcs), can promote DNA damage-induced cell apoptosis. Here we characterize an important regulation of RNF144A through its transmembrane (TM) domain. The TM domain of RNF144A is highly conserved among species. Deletion of the TM domain abolishes its membrane localization and also significantly reduces its ubiquitin ligase activity. Further evidence shows that the TM domain is required for RNF144A self-association and that the self-association may be partially mediated through a classic GXXXG interaction motif. A mutant RNF144A-G252L/G256L (in the G252XXXG256 motif) preserves membrane localization but is defective in self-association and ubiquitin ligase activity. On the other hand, a membrane localization loss mutant of RNF144A still retains self-association and E3 ligase activity, which can be blocked by additional G252L/G256L mutations. Therefore, our data demonstrate that the TM domain of RNF144A has at least two independent roles, membrane localization and E3 ligase activation, to regulate its physiological function. This regulatory mechanism may be applicable to other RBR (RING1-IBR-RING2) E3 ubiquitin ligases because, first, RNF144B also self-associates. Second, all five TM-containing RBR E3 ligases, including RNF144A and RNF144B, RNF19A/Dorfin, RNF19B, and RNF217, have the RBR-TM(GXXXG) superstructure. Mutations of the GXXXG motifs in RNF144A and RNF217 have also be found in human cancers, including a G252D mutation of RNF144A. Interestingly, RNF144A-G252D still preserves self-association and ubiquitin ligase activity but loses membrane localization and is turned over rapidly. In conclusion, both proper membrane localization and self-association are important for RNF144A function.  相似文献   

7.
The effects of purification procedures on the self-association of myosin at high ionic strength have been investigated by high-speed sedimentation equilibrium. The method of purification profoundly affects the self-association characteristics of the myosin molecule. Myosin purified by chromatography on Sephadex G-200 (S-myosin) behaves (in the limit) as a single nonideal thermodynamic component with little (if any) reversible dimerization (K21 = 1.05 dl/g) and with a second viral coefficient, B1 = 0.064 dl/g, compatible with excluded volume effects alone. Conversely, myosin which had been subjected to (NH4)2SO4 precipitation followed by chromatography on DEAE-Sephadex (DEAE-myosin) dimerizes reversibly to a significant extent judged by its apparent association constant, K21 ? 9 dl/g. In addition, higher N-mers appear to partake in the equilibria. The nonideality of this system, B1 = 2.2 ± 0.1 dl/g, is also greater than that of S-myosin. Two possible explanations to account for these findings are offered: (1) Myosin may undergo a change in conformation (denaturation?) during the preparation steps which lead to DEAE-myosin; (2) another component (C-protein?) which would modulate the self-association properties of myosin may be involved.  相似文献   

8.
Pretreatment of rats by ellipticines enhanced the microsomal concentration of cytochrome P-450, benzo[a]pyrene (BP) metabolism and activation and, to a smaller extent, ethoxycoumarin deethylation, but not acetanilide hydroxylation. This increased BP biotransformation was essentially due to the formation of bay-region metabolites, BP 9,10-diol, BP 7,8-diol and 9-hydroxy-BP, or to the formation of BP 7,8-diol-9,10-epoxide- and of 9-hydroxy-BP 4,5-oxide-DNA adducts. In the ellipticine series, 9-fluoroellipticine (9-FE) presents a slight inducing potency compared with the parent and 9-hydroxy molecules. Pretreatment of mice with 9-hydroxyellipticine (9-OHE) led also to an increased mutagenicity of BP and to an augmentation of skin carcinogenesis by 7,12-dimethylbenz[a]anthracene (DMBA). These results clearly show that 9-OHE induces the biosynthesis of cytochrome P-450 which markedly stimulates the mutagenic and carcinogenic potentialities of polycyclic aromatic hydrocarbons (PAH).  相似文献   

9.
Glycine-rich RNA-binding proteins (GR-RBPs) are involved in cold shock response of plants as RNA chaperones facilitating mRNA transport, splicing and translation. GR-RBPs are bipartite proteins containing a RNA recognition motif (RRM) followed by a glycine-rich region. Here, we studied the structural basis of nucleic acid binding of full-length Nicotiana tabacum GR-RBP1. NMR studies of NtGR-RBP1 show that the glycine-rich domain, while intrinsically disordered, is responsible for mediating self-association by transient interactions with its RRM domain (NtRRM). Both NtGR-RBP1 and NtRRM bind specifically and with low micromolar affinity to RNA and single-stranded DNA. The solution structure of NtRRM shows that it is a canonical RRM domain. A HADDOCK model of the NtRRM–RNA complex, based on NMR chemical shift and NOE data, shows that nucleic acid binding results from a combination of stacking and electrostatic interactions with conserved RRM residues. Finally, DNA melting experiments demonstrate that NtGR-RBP1 is more efficient in melting CTG containing nucleic acids than isolated NtRRM. Together, our study supports the model that self-association of GR-RBPs by the glycine-rich region results in cooperative unfolding of non-native substrate structures, thereby enhancing its chaperone function.  相似文献   

10.
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n = 11), transport (n = 6), membrane structure (n = 5), stress response (n = 2), DNA damage repair (n = 1), and other processes (n = 3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.  相似文献   

11.
Daunomycin and carminomycin, two anthracycline antibiotics known to bind phospholipid bilayers, appear to self-associate at the surface of liposomes at high bound drug/lipid ratios (r). Fluorescence intensity, lifetime, and anisotropy measurements have been used to monitor the equilibrium binding of these drugs to small unilamellar solid-phase dipalmitoylphosphatidylcholine vesicles. Association of an anthracycline with excess liposome (low r) resulted in an increase in both the observed intensity and the fluorescence lifetime. At low vesicle concentrations (high r), a decrease in the total emission intensity was observed which was not paralleled by the excited-state lifetime. The data from these experiments are consistent with the formation of nonfluorescent anthracycline complexes at the surface of liposomes. Such ligand self-association is a potential complication in any studies on the interaction of amphipathic molecules with liposomes conducted at high r values. Because ligand self-association limits the collection of binding data over certain concentration ranges, this consequently results in greater uncertainty in the determination of the maximum value of r (n) in equilibrium binding studies.  相似文献   

12.
Among the purine derivatives, N-6-dimethyladenosine [6-(dimethylamino)-purine-ribonucleoside] and N-6,9-di-methyladenine [6-(methylamino)-9-methyl-purine] show an exceptionally high self-association tendency. The self-association of these two substances was studied by equilibrium ultiacentrifugation at several concentrations and temperatures. Thus, the thermo dynamic quantities ΔH0 and ΔS0 as well as the nonideality parameters could be evaluated. In both cases, the equilibrium constants at 25°C were found to he higher than the values reported in the literature. This may be due to the fact that in our work the influences of nonideality were taken into account.  相似文献   

13.
The self-association of β-lactoglobulin C at low pH (ca. 2.5) in glycine buffers has been studied at four temperatures, 10, 16, 20, and 25 °C, by low- and high-speed sedimentation equilibrium experiments. One buffer had an ionic strength of 0.1 and the other an ionic strength of 0.2. With either buffer the concentration dependence of the apparent weight average molecular weight, Mwa, was characteristic of a nonideal self-association. Like its genetic variants, β-lactoglobulin A and B, the self-association of β-lactoglobulin C increased with decreasing temperature; however, at the same temperature the association was always stronger in the buffer having the higher ionic strength. Several models were used to test the self-association, and a monomer-dimer self-association seemed to describe the self-association best with either buffer. Values of the association equilibrium constant, K2, and the second virial coefficient, BM1, are reported at each temperature for both series of experiments. Values of the thermodynamic functions, ΔG °, ΔH °, and ΔS °, are also reported for these experiments.  相似文献   

14.
《Plant science》1988,54(2):109-115
The interaction of monomeric and dimeric derivatives of ellipticine (a plant alkaloid) with plant mitochondria was studied by following electron transport and phosphorylative activities. It is shown that these compounds act as powerful inhibitors of the electron transfer in the terminal enzyme, i.e. cytochrome c oxidase, (presumably in the vicinity of cytochromes a-a3) and exhibit uncoupling activities. The possibility of mitochondrial inner membrane being one of the sites of action of ellipticine derivatives is discussed in relation with their well-known pharmacological properties.  相似文献   

15.
1. The biologic experiments with the links of the methane series—n-pentane, n-hexane, n-heptane, n-octane, i-octane, and pentene—gave these qualitative results: (a) The higher the number of CH2 groups, the longer the chain, the longer the average lifetime of the animal. (b) The ramified chain does not appear to act differently from the saturated straight chain with the same number of C atoms. (c) One double bond within the chain shortens the lifetime to a considerable degree. 2. The quantitative discussion shows that the lifetimes depend exponentially on the molecular weight. 3. Qualitatively the hypothesis is supported that with rising molecular weight the concentration of CH2 groups within the animal diminishes according to the vapor pressure or the thermodynamic potential. However, lifetime and these physical properties obey different functions. 4. These physical properties are of high biologic importance. But they are not sufficient to explain the biologic effects quantitatively.  相似文献   

16.
The simple reversible intercalating agent isopropyl-OPC (iPr-OPC) induces frameshift-1 mutations in Salmonella typhimurium and Escherichia coli. The mutagenic responses of S. typhimurium and E. coli wild-type strains are not proportional to the amount of drug intercalated into double-stranded nucleic acids in living bacteria; it occurs only above a minimum level of binding. The fact that mismatch-repair-deficient (mutS) as well as adenine-methylation-deficient (dam) E. coli mutants are hypermutable at low concentrations of iPr-OPC suggests that the majority of mutants induced by this intercalating drug occur as mismatch-repairable mutations (or lesions) in the newly synthesized DNA strand close to the replication fork.  相似文献   

17.
Reductive amination of 3'-apurinic octathymidylate with 9-aminoellipticine provides octathymidylate covalently linked to intercalating ellipticine through a 3,4-dihydroxypentamethylene linker. Studies of its binding properties to poly(rA) reveals the formation of two different complexes depending of the temperature (Tm 13 degrees C and 38 degrees C) with dT/rA stoichiometry respectively equal to 2/1 and 1/1. When compared to parent octathymidylate, stability of the latter duplex is enhanced by the interaction energy provided by the dye moiety.  相似文献   

18.
19.
Hypertrophic chondrocytes participate in matrix mineralization by releasing matrix vesicles (MVs). These MVs, by accumulating Ca2+ and phosphate initiate the formation of hydroxyapatite. To determine the types of lipids essential for mineralization, we analyzed fatty acids (FAs) in MVs, microvilli and in membrane fractions of chondrocytes isolated from femurs of chicken embryos. The FA composition in the MVs was almost identical to that in microvilli, indicating that the MVs originated from microvilli. These fractions contained more monounsaturated FAs especially oleic acid than in membrane homogenates of chondrocytes. They were enriched in 5,8,11-eicosatrienoic acid (20:3n−9), in eicosadienoic acid (20:2n−6), and in arachidonic acid (20:4n−6). In contrast, membrane homogenates from chondrocytes were enriched in 20:1n−9, 18:3n−3, 22:5n−3 and 22:5n−6. Due to their relatively high content in MVs and to their selective recruitment within microvilli from where MV originate, we concluded that 20:2n−6 and 20:3n−9 (pooled values), 18:1n−9 and 20:4n−6 are essential for the biogenesis of MVs and for bone mineralization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号