首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cover     
Taxon‐specific measurements of biomass provide reliable estimates of annual net primary production by entire assemblages of macroalgae in giant kelp forests off Santa Barbara, California, USA. Photo by Ron McPeak. [Vol. 49, No. 2, pp. 248–257]  相似文献   

2.
Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and that lobster fishing does not always catalyze a top-down trophic cascade.  相似文献   

3.
Hard bottom, subtidal communities along the Western Antarctic Peninsula are dominated by forests of large, chemically defended macroalgae that support a very dense assemblage of amphipods. Free-living filamentous algae are rare in the subtidal, but filamentous algal endophytes are common in many of the larger macroalgae, both likely as the result of amphipod grazing pressure. Filamentous algae are common in the intertidal, but primarily in the upper intertidal and on high-energy shores where amphipods are likely to be excluded much of the time. We tested the hypothesis that free-living, filamentous algae would be rapidly consumed if transplanted from the intertidal to the subtidal, and our results clearly supported this hypothesis. The filamentous, intertidal green alga Cladophora repens was transplanted to the benthos in 6 different macroalgal habitats. Control algae were transplanted in 3 m deeper waters nearby (usually 12 m or less laterally) but suspended 3 m off the bottom where amphipods are absent or rare. Overall consumption during approximately 6 h on the bottom ranged from 22 to 98% of the initial biomass, while significantly less biomass loss occurred in the water column.  相似文献   

4.
The effects of variation in vegetative biomass, stand density, and stand location on sporophyll production in the giant kelp Macrocystis pyrifera (L.) C.Ag. were examined in a multifactorial experiment off the coast of Santa Barbara, California. Results indicate that vegetative biomass greatly influences zoospore production in this kelp, since the removal of 75% of vegetative fronds led to a drastic decrease in sporophyll production. Sporophyll biomass was shown to be closely correlated to zoospore production (r = 0.995). Plants growing offshore produced significantly less sporophyll biomass per plant than those inshore. Site differences in sporophyll production may have been caused by differential shading resulting from the persistence of the surface canopy offshore and the senescence of it inshore. As a possible result, increased plant density significantly decreased sporophyll biomass offshore and had no effect inshore. The timing of events such as storms which remove vegetative biomass could affect the local population dynamics of this kelp by decreasing zoospore production.  相似文献   

5.
Light is the fundamental driver of primary productivity in the marine environment. Reduced light availability has the potential to alter the distribution, community composition, and productivity of key benthic primary producers, potentially reducing habitat and energy provision to coastal food webs. We compared the underwater light environment of macroalgal dominated shallow subtidal rocky reef habitats on a coastline modified by human activities with a coastline of forested catchments. Key metrics describing the availability of photosynthetically active radiation (PAR) were determined over 295 days and were related to macroalgal depth distribution, community composition, and standing biomass patterns, which were recorded seasonally. Light attenuation was more than twice as high in shallow subtidal zones along the modified coast. Macroalgal biomass was 2–5 times greater within forested sites, and even in shallow water (2m) a significant difference in biomass was observed. Long-term light dose provided the best explanation for differences in observed biomass between modified and forested coasts, with light availability over the study period differing by 60 and 90 mol photons m−2 at 2 and 10 metres, respectively. Higher biomass on the forested coast was driven by the presence of larger individuals rather than species diversity or density. This study suggests that commonly used metrics such as species diversity and density are not as sensitive as direct measures of biomass when detecting the effects of light limitation within macroalgal communities.  相似文献   

6.
The effects of nutrients dynamics on biological invasions in marine habitats have not been fully investigated. The present study aimed to evaluate the role of nutrient pollution in determining the successful invasion of the introduced seaweed Caulerpa racemosa var. cylindracea in a Mediterranean subtidal rocky habitat. To this end, a manipulative field experiment was carried out by supplying the water column with nutrients for a one-year period. Afterwards C. racemosa was transplanted in both nutrient-enriched and control macroalgal assemblages. Results showed that the penetration and biomass of C. racemosa in the assemblages previously treated with nutrients were higher than in control ones, indicating that communities stressed by nutrient pollution are more vulnerable to invasion. The nutrient enrichment changed the structure of natural macroalgal assemblages, mainly by encouraging the growth of turf species. No significant effects were detected for the erect and prostrate layers and for the number of species, suggesting that the susceptibility of the community to invasion may depend more on the morpho-functional identity of macroalgae rather than on the diversity of assemblages. Changes in the availability of seawater nutrients may foster the spread of C. racemosa, both by enhancing its growth and eroding the natural resistance of macroalgal assemblages. Thus, the maintenance of good water quality may play an important role in containing both C. racemosa and other introduced seaweeds.  相似文献   

7.
Experiments in intertidal and subtidal rocky marine habitats in temperate Australia have identified the effects of various biological and physical factors on algal assemblages. In intertidal habitats, these involve micro- and macro-algae and grazing by gastropods. In subtidal habitats, interactions among micro- and macro-algae, echinoids, gastropods, micro-invertebrates and sessile invertebrates have been studied. Experimental studies on physical disturbances of algal assemblages have focussed on the effects of desiccation and storms. Most studies have not considered more than one spatial or temporal scale. Few have been concerned with seasonal influences and fewer have been concerned with variation from year to year. Most of the work lacks applicability to biogeographic comparisons. More experimental work across a variety of spatial and temporal scales is required to determine significant biological and physical processes affecting structure of algal assemblages across broad areas of temperate Australia.  相似文献   

8.
Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter‐trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context‐dependency of the effects of consumer species loss by conducting a 15‐month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat‐dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non‐interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change. Synthesis The roles of species may vary with environmental context, making it difficult to predict how biodiversity loss affects ecosystem functioning across multiple habitats. We tested how natural algal assemblages in two distinct intertidal habitats responded to the removal of different combinations of key consumer species. Despite an initial habitat‐dependent effect of consumer loss, habitat type did not modify the longer‐term responses of algal assemblages to either the identity or number of consumer species removed. Our findings show that, in certain systems, consumer diversity remains a primary driver of ecosystem functioning across widely different environmental contexts.  相似文献   

9.
The study evaluated different macroalgal invasions in the main Mediterranean coastal habitats on hard bottom. Biodiversity, species composition and structure of macroalgal assemblages were compared among non-invaded areas and areas invaded by the Chlorophyta Caulerpa racemosa var. cylindracea and by the turf-forming Rhodophyta Womersleyella setacea in three different habitats: shallow rocky bottom, deep rocky bottom and dead matte of the seagrass Posidonia oceanica. Results showed that alien macroalgae constituted a relevant component of benthic assemblages in invaded areas of the Mediterranean Sea. Assemblages invaded by Womersleyella setacea and Caulerpa racemosa showed lower values of diversity and large differences in the structure and species composition related to non-nvaded assemblages. The species that mostly suffered from invasion were erect species reproducing sexually; moreover, the dominance of W. setacea led to low abundance of native filamentous algae, while C. racemosa colonization seemed particularly threatening for encrusting algae. All the studied habitats appeared highly invasible by alien macroalgae, even if W. setacea appeared more invasive in deeper habitats, while colonization of C. racemosa seemed more serious in shallower habitats; the dead matte of P. oceanica represented a suitable substrate for the spread of both species. Differences among assemblages in different habitats were reduced in invaded areas.  相似文献   

10.
All three macroalgal clades (Chlorophyta, Rhodophyta, and Phaeophyceae) contain bloom-forming species. Macroalgal blooms occur worldwide and have negative consequences for coastal habitats and economies. Narragansett Bay (NB), Rhode Island, USA, is a medium sized estuary that is heavily influenced by anthropogenic activities and has been plagued by macroalgal blooms for over a century. Over the past decade, significant investment has upgraded wastewater treatment from secondary treatment to water-quality based limits (i.e. tertiary treatment) in an effort to control coastal eutrophication in this system. The goal of this study was to improve the understanding of multi-year macroalgal bloom dynamics through intensive aerial and ground surveys conducted monthly to bi-monthly during low tides in May–October 2006–2013 in NB. Aerial surveys provided a rapid characterization of macroalgal densities across a large area, while ground surveys provided high resolution measurements of macroalgal identity, percent cover, and biomass.Macroalgal blooms in NB are dominated by Ulva and Gracilaria spp. regardless of year or month, although all three clades of macroalgae were documented. Chlorophyta cover and nutrient concentrations were highest in the middle and upper bay. Rhodophyta cover was highest in the middle and lower bay, while drifting Phaeophyceae cover was patchy. Macroalgal blooms of >1000 g fresh mass (gfm)/m2 (max = 3510 gfm/m2) in the intertidal zone and >3000 gfm/m3 (max = 8555 gfm/m3) in the subtidal zone were observed within a heavily impacted embayment (Greenwich Bay). Macroalgal percent cover (intertidal), biomass (subtidal), and diversity varied significantly between year, month-group, site, and even within sites, with the highest species diversity at sites outside of Greenwich Bay. Total intertidal macroalgal percent cover, as well as subtidal Ulva biomass, were positively correlated with temperature. Dissolved inorganic nitrogen concentrations were correlated with the total biomass of macroalgae and the subtidal biomass of Gracilaria spp. but not the biomass of Ulva spp. Despite seasonal reductions in the nutrient output of wastewater treatment facilities emptying into upper Narragansett Bay in recent years, macroalgal blooms still persist. Continued long-term monitoring of water quality, macroalgal blooms, and ecological indicators is essential to understand the changes in macroalgal bloom dynamics that occur after nutrient reductions from management efforts.  相似文献   

11.
The barn owl (Tyto alba) is a non-migratory species widely distributed across much of North America in areas with extensive old-field and grassland habitat and without extensive winter snow cover. We investigated the genetic diversity and phylogeographic patterns of barn owl populations in western North America, ranging from British Columbia (BC) to southern California, and one eastern population from Pennsylvania. We also determined the genetic distinctiveness of a population off the coast of southern California, Santa Barbara Island, as management plans to control the local owl population are being considered to decrease predation rate on the now threatened Scripps’s Murrelet (Synthliboramphus scrippsi). Using 8 polymorphic microsatellite markers (N = 126) and ND2 mitochondrial sequences (N = 37), we found little to no genetic structure among all sampled regions, with the exception of Santa Barbara Island. The BC mainland population, despite its northwestern geographically peripheral location and ongoing habitat degradation, is not genetically depauperate. However, individuals from Vancouver Island, likewise a peripheral population in BC, exhibited the lowest genetic diversity of all sampled locations. The low global FST value (0.028) estimated from our study suggests that old-field agricultural habitats are well connected in North America. Since the BC population has declined by about 50 % within the last three decades, it is vital to focus on preserving the remaining barn owl habitats in BC to allow successful establishment from neighbouring populations. Additionally, our microsatellite data revealed that the population on Santa Barbara Island showed genetic divergence from its continental counterpart. Mitochondrial data, however, demonstrated that this island population is not a monophyletic lineage containing unique haplotypes, and hence cannot be designated as an Evolutionarily Significant Unit.  相似文献   

12.

Background

Enhanced nutrient loading and depletion of consumer populations interact to alter the structure of aquatic plant communities. Nonetheless, variation between adjacent habitats in the relative strength of bottom-up (i.e. nutrients) versus top-down (i.e. grazing) forces as determinants of community structure across broad spatial scales remains unexplored. We experimentally assessed the importance of grazing pressure and nutrient availability on the development of macroalgal assemblages and the maintenance of unoccupied space in habitats differing in physical conditions (i.e. intertidal versus subtidal), across regions of contrasting productivity (oligotrophic coasts of South Australia versus the more productive coasts of Eastern Australia).

Methodology/Principal findings

In Eastern Australia, grazers were effective in maintaining space free of macroalgae in both intertidal and subtidal habitats, irrespective of nutrient levels. Conversely, in South Australia, grazers could not prevent colonization of space by turf-forming macroalgae in subtidal habitats regardless of nutrients levels, yet in intertidal habitats removal of grazers reduced unoccupied space when nutrients were elevated.

Conclusions/Significance

Assessing the effects of eutrophication in coastal waters requires balancing our understanding between local consumer pressure and background oceanographic conditions that affect productivity. This broader-based understanding may assist in reconciling disproportionately large local-scale variation, a characteristic of ecology, with regional scale processes that are often of greater relevance to policy making and tractability to management.  相似文献   

13.
The deep‐water macroalgal assemblage was described at 14 sites off the central California coast during 1999 and 2000 from SCUBA and remotely operated vehicle sampling. The stipitate kelp Pleurophycus gardneri Setchell & Gardner, previously thought to be rare in the region, was abundant from 30 to 45 m, forming kelp beds below the well‐known giant kelp forests. Macroalgae typically formed three broadly overlapping zones usually characterized by one or a few visually dominant taxa: 1) the upper “Pleurophycus zone” (30–45 m) of stipitate kelps and Desmarestia spp. with a high percent cover of corallines, low cover of uncalcified red algae, and rare green algae; 2) a middle “Maripelta zone” (40–55 m) with other uncalcified red algae and infrequent corallines and green algae; and 3) a zone (55–75 m) of infrequent patches of nongeniculate coralline algae. The green alga Palmophyllum umbracola Nelson & Ryan, not previously reported from the Northeast Pacific, was found over the entire geographical range sampled from 35 to 54 m. Year‐round profiles of water column irradiance revealed unexpectedly clear water with an average K0 of 0.106·m ? 1 Received 18 January 2002. Accepted 16 December 2002. . The low percent surface irradiance found at the average lower macroalgal depth limits in this study (0.56% for brown algae, 0.12% for uncalcified red algae, and 0.01% for nongeniculate coralline algae) and lack of large grazers suggest that light controls the lower distributional limits. The ubiquitous distribution, perennial nature, and similar lower depth limits of deep‐water macroalgal assemblages at all sites suggest that these assemblages are a common persistent part of the benthic biota in this region.  相似文献   

14.
Terrestrial net primary production (NPP) varies across global climate gradients, but the mechanisms through which climate drives this variation remain subject to debate. Specifically, it is debatable whether NPP is primarily influenced by ‘direct’ effects of climate on the kinetics of plant metabolism or ‘indirect’ effects of climate on plant size, stand biomass, stand age structure and growing season length. We clarify several issues in this debate by presenting multiple lines of evidence that support a primarily indirect influence of climate on global variation in NPP across broad geographical gradients. First, we highlight > 60 years of research that suggests leaf area, growing season length, plant biomass and/or plant age are better predictors of NPP than climate or latitude. Second, we refute recent claims that using biomass and age as predictors of NPP represents circular reasoning. Third, we illustrate why effects of climate on the kinetics of plant production must be evaluated using instantaneous (not annualized) rates of productivity. Fourth, we review recent analyses showing that the effects of biomass and age on NPP are much stronger than the effects of climate. Fifth, we present new analyses of a high‐quality NPP dataset that demonstrate further that biomass, age and growing season length are better predictors of global variation in NPP than climate variables. Our results are consistent with the hypothesis that variation in NPP across global climate gradients primarily reflects the influence of climate on growing season length and stand biomass, as well as stand age, rather than the effects of temperature and precipitation on the kinetics of metabolism. However, this hypothesis should be evaluated further using larger, high‐quality observational and experimental datasets spanning multiple geographical scales.  相似文献   

15.
Ultraviolet radiation (UVR) research on marine macroalgae has hithero focussed on physiological effects at the organism level, while little is known on the impact of UV radiation on macroalgal assemblages and even less on interactive effects with other community drivers, e.g. consumers. Field experiments on macrobenthos are scarce, particularly in the Antarctic region. Therefore, the effects of UVR and consumers (mainly limpets were excluded) on early successional stages of a hard bottom macroalgal community on King George Island, Antarctica, were studied. In a two‐factorial design experimental units [(1) ambient radiation, 280–700 nm; (2) ambient minus UVB, 320–700 nm and (3) ambient minus UVR, 400–700 nm vs. consumer–no consumer] were installed between November 2004 and March 2005 (n= 4 plus controls). Dry mass, species richness, diversity and composition of macroalgal assemblages developing on ceramic tiles were followed. Consumers significantly suppressed green algal recruits and total algal biomass but increased macroalgal richness and diversity. Both UVA and UVB radiation negatively affected macroalgal succession. UVR decreased the density of Monostroma hariotii germlings in the first 10 weeks of the experiment, whereas the density of red algal recruits was significantly depressed by UVR at the end of the study. After 106 days macroalgal diversity was significantly higher in UV depleted than in UV‐exposed assemblages. Furthermore, species richness was significantly lower in the UV treatments and species composition differed significantly between the UV‐depleted and the UV‐exposed treatment. Marine macroalgae are very important primary producers in coastal ecosystems, serving as food for herbivores and as habitat for many organisms. Both, UVR and consumers significantly shape macroalgal succession in the Antarctic intertidal. Consumers, particularly limpets can mediate negative effects of ambient UVR on richness and diversity till a certain level. UVB radiation in general and an increase of this short wavelength due to stratospheric ozone depletion in particular may have the potential to affect the zonation, composition and diversity of Antarctic intertidal seaweeds altering trophic interactions in this system.  相似文献   

16.
Recruitment is often important in structuring patterns of distribution and abundance of algal assemblages. Intertidal and subtidal turfing algal assemblages consistently vary on small spatial scales (tens of centimetres), and this variability may be due to patterns of recruitment varying on similar spatial scales. The validity of this model was evaluated by testing the hypothesis that the numbers and types of taxa recruiting to turfs would vary at small spatial scales within intertidal and within subtidal habitats. Abundances of algal recruits were estimated on sandstone plates that were placed at a number of spatial scales within intertidal and within subtidal habitats (centimetres to tens of metres). Significant differences in entire assemblages were found only between habitats. This was explained by abundances of individual taxa, which generally varied between intertidal and subtidal habitats or between sites within habitats. Only small proportions of the overall spatial variation (dissimilarity) could be explained at the scale of replicate recruitment plates that were centimetres apart. Results indicate that while recruitment may contribute to differences between intertidal and subtidal habitats, it cannot explain the small-scale spatial variability in established turfing algal assemblages within these habitats. There was some evidence to suggest that recruitment may contribute to variability in established turfing algal assemblages but only over longer time scales than examined here.  相似文献   

17.
We gathered sequence information from the nuclear 5.8S rDNA gene and associated internal transcribed spacers, ITS-1 and ITS-2 (5.8S rDNA/ITS), and the chloroplast maturase K (matK) gene, from Zostera samples collected from subtidal habitats in Monterey and Santa Barbara (Isla Vista) bays, California, to test the hypothesis that these plants are conspecific with Z. asiatica Miki of Asia. Sequences from approximately 520 base pairs of the nuclear 5.8S rDNA/ITS obtained from the subtidal Monterey and Isla Vista Zostera samples were identical to homologous sequences obtained from Z. marina collected from intertidal habitats in Japan, Alaska, Oregon and California. Similarly, sequences from the matK gene from the subtidal Zostera samples were identical to matK sequences obtained from Z. marina collected from intertidal habitats in Japan, Alaska, Oregon and California, but differed from Z. asiatica sequences accessioned into GenBank. This suggests the subtidal plants are conspecific with Z. marina, not Z. asiatica. However, we found that herbarium samples accessioned into the Kyoto University Herbarium, determined to be Z. asiatica, yielded 5.8S rDNA/ITS sequences consistent with either Z. japonica, in two cases, or Z. marina, in one case. Similar results were observed for the chloroplast matK gene; we found haplotypes that were inconsistent with published matK sequences from Z. asiatica collected from Japan. These results underscore the need for closer examination of the relationship between Z. marina along the Pacific Coast of North America, and Z. asiatica of Asia, for the retention and verification of specimens examined in scientific studies, and for assessment of the usefulness of morphological characters in the determination of taxonomic relationships within Zosteraceae.  相似文献   

18.
19.
Ongoing changes in natural diversity due to anthropogenic activities can alter ecosystem functioning. Particular attention has been given to research on biodiversity loss and how those changes can affect the functioning of ecosystems, and, by extension, human welfare. Few studies, however, have addressed how increased diversity due to establishment of nonindigenous species (NIS) may affect ecosystem function in the recipient communities. Marine algae have a highly important role in sustaining nearshore marine ecosystems and are considered a significant component of marine bioinvasions. Here, we examined the patterns of respiration and light‐use efficiency across macroalgal assemblages with different levels of species richness and evenness. Additionally, we compared our results between native and invaded macroalgal assemblages, using the invasive brown macroalga Sargassum muticum (Yendo) Fensholt as a model species. Results showed that the presence of the invader increased the rates of respiration and production, most likely as a result of the high biomass of the invader. This effect disappeared when S. muticum lost most of its biomass after senescence. Moreover, predictability–diversity relationships of macroalgal assemblages varied between native and invaded assemblages. Hence, the introduction of high‐impact invasive species may trigger major changes in ecosystem functioning. The impact of S. muticum may be related to its greater biomass in the invaded assemblages, although species interactions and seasonality influenced the magnitude of the impact.  相似文献   

20.
Patterns of NPP,GPP, respiration,and NEP during boreal forest succession   总被引:1,自引:0,他引:1  
We combined year‐round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, ~74, and ~154 years old to understand how ecosystem production and carbon stocks change during recovery from stand‐replacing crown fire. Live biomass (Clive) was low in the 1‐ and 6‐year‐old stands, and increased following a logistic pattern to high levels in the 74‐ and 154‐year‐old stands. Carbon stocks in the forest floor (Cforest floor) and coarse woody debris (CCWD) were comparatively high in the 1‐year‐old stand, reduced in the 6‐ through 40‐year‐old stands, and highest in the 74‐ and 154‐year‐old stands. Total net primary production (TNPP) was reduced in the 1‐ and 6‐year‐old stands, highest in the 23‐ through 74‐year‐old stands and somewhat reduced in the 154‐year‐old stand. The NPP decline at the 154‐year‐old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1‐ and 6‐year‐old stands were losing carbon, the 15‐year‐old stand was gaining a small amount of carbon, the 23‐ and 74‐year‐old stands were gaining considerable carbon, and the 40‐ and 154‐year‐old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6‐ and 15‐year‐old stands indicated the transition from carbon source to sink occurred within 11–12 years. The NEP decline at the 154‐year‐old stand appears related to increased losses from Clive by tree mortality and possibly from Cforest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号