首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

2.
    
The photosynthetic activity of different algal communities at the outer edge of an Equisetum fluviatile L. stand in an oligotrophic lake (Pääjärvi, in southern Finland) was investigated. Production by the algal communities was measured simultaneously using a modified 14C-method, and the results were related to the volume of algae and the available irradiance. The relative production rate (P/B quotient) of phytoplankton was ca. 3 × that of epiphyton and ca. 20 × that of epipelon. Epiphyton productivity remained almost constant although the algal volume varied greatly, suggesting that the surface layer of the algal community was mainly responsible for the photosynthetic activity. In the littoral area (at 1 m depth) primary production/m2 of lake surface by phytoplankton, epiphyton and epipelon was similar but in the littoriprofundal area (2–4 m) phytoplankton production was twice that of epipelon. Primary productivity of epiphyton and epipelon/m2 of substratum was about equal to phytoplankton productivity/m3 of water at the same irradiance. This relation provided a means of estimating the relative contributions of the different algal communities to the total algal production in the lake.  相似文献   

3.
    
Crustose coralline algae occupied ~1%–2% (occasionally up to 7%) of the sea floor within their depth range of 15–50 m, and they were the dominant encrusting organisms and macroalgae beyond 20 m depth in Young Sound, NE Greenland. In the laboratory, oxygen microelectrodes were used to measure net photosynthesis (P) versus downwelling irradiance (Ed) and season for the two dominant corallines [Phymatolithon foecundum (Kjellman) Düwel et Wegeberg 1996 and Phymatolithon tenue (Rosenvinge) Düwel et Wegeberg 1996] representing> 90% of coralline cover. Differences in P‐Ed curves between the two species, the ice‐covered and open‐water seasons, or between specimens from 17 and 36 m depth were insignificant. The corallines were low light adapted, with compensation irradiances (Ec) averaging 0.7–1.8 μmol photons·m ? 2·s ? 1 and light adaptation (Ek) indices averaging 7–17 μmol photons·m ? 2·s ? 1. Slight photoinhibition was evident in most plants at irradiances up to 160 μmol photons·m ? 2·s ? 1. Photosynthetic capacity (Pm) was low, averaging 43–67 mmol O2·m ? 2 thallus·d ? 1 (~250–400 g C·m ? 2 thallus·yr ? 1). Dark respiration rates averaged ~5 mmol O2·m ? 2 thallus·d ? 1. In ice covered periods, Ed at 20 m depth averaged ~1 μmol photons·m ? 2·s ? 1, with daily maxima of 2–3 μmol photons·m ? 2·s ? 1. During the open water season, Ed at 20 m depth averaged ~7 μmol photons·m ? 2·s ? 1 with daily maxima of ~30 μmol photons·m ? 2·s ? 1. Significant net primary production of corallines was apparently limited to the 2–3 months with open water, and the small contribution of corallines to primary production seems due to low Pm values, low in situ irradiance, and their relatively low abundance in Young Sound.  相似文献   

4.
    
The macroalga Ulva ohnoi constitutes a considerable fraction of green tides in coastal areas of Japan, but little is known about the physiological characteristics of this species. To investigate the environmental factors that promote the formation of green tides, we tested the responses of U. ohnoi and another common Japanese species, Ulva pertusa, to various levels of irradiance at different water temperatures. Because the two species are morphologically similar, we identified them using the PCR‐restriction fragment length polymorphism method. Under laboratory conditions, we evaluated the photosynthetic, dark respiration, and relative growth rate at a range of water temperatures (5 to 35°C) and photosynthetically active radiation (0 to 1000 μmol photons m?2 s?1). The maximum gross photosynthetic rate of U. ohnoi was larger than that of U. pertusa. The dark respiration rates revealed no significant differences among the species and temperature conditions. At 500 μmol photons m?2 s?1, the relative growth rate of U. ohnoi was larger than that of U. pertusa in higher temperature and the difference was the largest at 20°C. The estimated compensation irradiance and estimated saturation irradiance of U. ohnoi and U. pertusa ranged from 0.709 to 5.510 and 40.530 to 58.674 μmol photons m?2 s?1, which were lower than those in other intertidal green macroalgae, from 6 to 11 and 50 to 82 μmol photons m?2 s?1, respectively. Thus, U. ohnoi which exists as free‐floating near the water surface and accumulating inside the green tide can survive extensively in the water column of the intertidal zone, furthermore, the species can maintain rapid growth in this situation. Therefore, as a result of this study, it is suggested that the ecological success of U. ohnoi in shallow waters such as the tidal flats, estuarine, and coasts of the inner bay in comparison with U. pertusa.  相似文献   

5.
Kisand  Veljo  Nõges  Tiina  Zingel  Priit 《Hydrobiologia》1998,380(1-3):93-102
The diel dynamics of bacterio- and phytoplankton as main compartments in the pelagic foodweb were followed in order to assess the coupling between algal photosynthesis and bacterial growth during a diel cycle in Lake Võrstjärv, Estonia. Three diurnal studies were carried out, on July 12th–13th, 1994; on June 25th–26th, 1995 and on July 17th–18th, 1995 with a sampling interval of 3–4 hours. Diel variations in bacterial number, biomass and productivity, in phytoplankton primary production and extracellular release of photosynthetic products, in ciliate number and biomass were followed. Phytoplankton was dominated by filamentous species: Limnothrix redekei, Oscillatoria sp., Aulacoseira (Melosira) ambigua and Planktolyngbya limnetica. The abundance of bacteria ranged from 4.1 to 14.6 · 1012 cells m-2 (median 9.88). The production of heterotrophic bacteria varied from 0.6 to 11 mgC m-2 h-1 (median 3.65), the variation during diel cycle was high. Depth integrated values of particulate (PPpart) and extracellular primary production (PPdiss) ranged from 6 to 55 and from 17 to 90 mgC m- 2 h-1, respectively. About 50 ciliate taxa were identified among them more abundant were bacterivores, bacterivores- herbivores and omnivores. Biomass of bacterivorous ciliates (TCbact) varied from 8 to 427 mgC m-2. Bacterioplankton production constituted not more than 20% of total primary production (particulate + released), dynamics of bacterial production was related to the primary production, the correlation was negative with PPpart and positive with PPdiss. Different types of potential controlling factors of bacterioplankton (N and P nutrient control, bottom-up control by food and top-down control) are discussed.  相似文献   

6.
1. Tallgrass prairies and their streams are highly endangered ecosystems, and many remaining streams are threatened by the encroachment of woody riparian vegetation. An increase in riparian vegetation converts the naturally open‐canopy prairie streams to closed‐canopy systems. The effects of a change in canopy cover on stream metabolism are unknown. 2. Our goal was to determine the effects of canopy cover on prairie stream metabolism during a 4‐year period in Kings Creek, KS, U.S.A. Metabolic rates from forested reaches were compared to rates in naturally open‐canopy reaches and restoration reaches, the latter having closed canopies in 2006 and 2007 and open canopies in 2008 and 2009. Whole‐stream metabolism was estimated using the two‐station diurnal method. Chlorophyll a concentrations and mass of filamentous algae were measured after riparian removal to assess potential differences in algal biomass between reaches with open or closed canopies. 3. Metabolic rates were spatially and temporally variable even though the sites were on very similar streams or adjacent to each other within streams. Before riparian vegetation removal, whole‐stream community respiration (CR) and net ecosystem production were greater with greater canopy cover. In the vegetation removal reaches, gross primary production was slightly greater after removal. 4. Chlorophyll a concentrations were marginally significantly greater in open (naturally open and removal reaches) than in closed canopy and differed significantly between seasons. Filamentous algal biomass was greater in open than in closed‐canopy reaches. 5. Overall, the restoration allowed recovery of some features of open‐canopy prairie streams. Woody expansion apparently increases CR and moves prairie stream metabolism towards a more net heterotrophic state. An increase in canopy cover decreases benthic chlorophyll, decreases dominance of filamentous algae and potentially alters resources available to the stream food web. The results of this study provide insights for land managers and conservationists interested in preserving prairie streams in their native open‐canopy state.  相似文献   

7.
The influence of growth irradiance on the non-steady-state relationship between photosynthesis and tissue carbon (C) and nitrogen (N) pools in Chaetomorpha linum (Muller) Kutzing in response to abrupt changes in external nitrogen (N) availability was determined in laboratory experiments. For a given thallus N content, algae acclimated to low irradiance consistently had a higher rate of light-saturated photosynthesis (Pmax normalized to dry weight) than algae acclimated to saturating irradiance; for both treatments, Pmax was correlated to thallus N. Both Pmax and the photosynthetic efficiency (αdw) were correlated in C. linum grown at either saturating or limiting irradiance over the range of experimental conditions, indicating that variations in electron transport were coupled to variations in C-fixation capacity despite the large range of tissue N content from 1.1% to 4.8%. Optimizing both α and Pmax and thereby acclimating to an intermediate light level may be a general characteristic of thin-structured opportunistic algae that confers a competitive advantage in estuarine environments in which both light and nutrient conditions are highly variable. Nitrogen-saturated algae had the same photosynthesis–irradiance relationship regardless of light level. When deprived of an external N supply, photosynthetic rates did not change in C. linum acclimated to low irradiance despite a two-fold decrease in tissue N content, suggesting that the active pools of chlorophyll and Rubisco remained constant. Both α and Pmax decreased immediately and continuously in algae acclimated to high irradiance on removal of the N supply even though tissue N content was relatively high during most of the N-starvation period, indicating a diversion of energy and reductant away from C fixation to support high growth rates. Carbon and nitrogen assimilation were equally balanced in algae in both light treatments throughout the N-saturation and -depletion phases, except when protein synthesis was limited by the depletion of internal N reserves in severely N-starved high-light algae and excess C accumulated as starch stores. This suggests that the ability for short-term adjustment of internal allocation to acquire N andC in almost constant proportions may be especially beneficial to macroalgae living in environments characterized by high variability in light levels and nutrient supply.  相似文献   

8.
    
Some introduced species compete directly with native species for resources and their spread can alter communities, while others do not proliferate and remain benign. This study compares community structure and diversity in adjacent areas dominated by the introduced alga Avrainvillea sp. or native algal species on a hard substrate reef. The biomass and species composition of 15 paired plots (30 in total, plot type based on dominance of Avrainvillea sp. or native species) were quantified. Plots dominated by Avrainvillea sp. had a significantly different assemblage of species characterized by lower algal diversity, mostly Dictyota spp. and Laurencia sp., and a higher abundance and diversity of invertebrates, such as small arthropods, polychaetes, and brittlestars. These results suggest that as Avrainvillea sp. becomes more abundant on hard substrate reefs, it will engineer a different community composed of algal epiphytes and an invertebrate assemblage more typically associated with algae in soft sediments.  相似文献   

9.
10.
1. Despite the recognition of its importance, benthic primary production is seldom reported, especially for large lakes. We measured in situ benthic net primary production by monitoring flux in dissolved inorganic carbon (DIC) concentration in benthic incubation chambers, based on continuous measurements of CO2(aq) flux, alkalinity, and the temperature‐dependent dissociation constants of carbonic acid (K1 and K2). This methodology has the advantages of monitoring net primary production directly as change in carbon, maintaining continuous water recirculation, and having sufficient precision to detect change in DIC over short (i.e. 15 min) incubations, even in alkaline waters. 2. Benthic primary production on Cladophora‐dominated rocky substrata in western Lake Ontario was measured biweekly. Maximum biomass‐specific net photosynthetic rates were highest in the spring (2.39 mgC g Dry Mass?1 h?1), decreased to negative rates by early summer (?0.76 mgC g DM?1 h?1), and exhibited a regrowth in late summer (1.98 mgC g DM?1 h?1). 3. A Cladophora growth model (CGM), previously validated to predict Cladophora biomass accrual in Lake Ontario, successfully simulated the seasonality and magnitude of biomass‐specific primary production during the first cohort of Cladophora growth. Averaged over this growing season (May–Aug), mean areal net benthic production at the estimated depth of peak biomass (2 m) was 405 mg C m?2 d?1. 4. We measured planktonic primary production in proximity to the benthic study and constructed a depth‐resolved model of planktonic production. Using the CGM, benthic primary production was compared with planktonic primary production for the period May–Aug. Net benthic production from the shoreline to the 12 m contour (1–2 km offshore) equalled planktonic production. Closer to shore, benthic primary production exceeded planktonic primary production. Failure to account for benthic primary production, at least during abundant Cladophora growth, will lead to large underestimates in carbon and nutrient flows in the nearshore zone of this Great Lake.  相似文献   

11.
Lindblad  C.  Kautsky  U.  André  C.  Kautsky  N.  Tedengren  M. 《Hydrobiologia》1989,188(1):277-283
The effects of antifouling paint leachate containing tributyltin on community metabolism and nutrient dynamics were measured in situ on natural communities dominated by Fucus vesiculosus. The measurements were made in two areas with different salinities and at various TBT concentrations up to about 5 µg 1–1. A portable continuous flow-through system was used in which the communities were incubated for a week. Continual measurements of oxygen, temperature, light and flow rate of water were made. A Perturbation Index (PI) and an Absolute Disturbance Index (ADI) were used to describe the changes due to treatment relative to the control, and to obtain a total picture of disturbance using all measured parameters. Photosynthesis was particularly strongly affected and changes were obvious in oxygen production and nutrient uptake at TBT levels as low as 0.6 µg 1–1.  相似文献   

12.
Seasonal development of benthic algae was studied over a three-year period in a small, nutrient-rich lowland stream to investigate inter-annual variation in the algal spring bloom and differences in algal biomass regulation on two different substrata: fine-grained sediments and stones. The algal spring bloom was initiated when irradiance at the sediment surface exceeded 7 mol photons m-2 d-1 and mean water velocity was concomitantly below the threshold for bed load transport in the stream. Large inter-annual and substratum-dependent differences in peak algal biomass were observed, thus suggesting that different parameters regulate algal biomass development on the two substrata. On fine-grained sediments algal biomass development was predominantly coupled to light availability, while on stony substrata algal composition and peak biomass might be affected by invertebrate grazing.  相似文献   

13.
The in situ primary production of three common under-story members of the Rhodophyta in South African west coast kelp beds was determined monthly for a year using dissolved oxygen techniques. Strong seasonal patterns of photosynthesis and respiration were evident in all three species. Net photosynthesis of all three species was greatest in spring (October) and lowest in winter (June). Increasing photosynthesis in late winter coincided with increasing ambient irradiance and photoperiod, whereas decreasing photosynthesis in summer was not explained by changes in the environmental parameters measured. We suggest that this may he due to an innate pattern related to some other seasonal plant activity such as reproduction. Seasonal Pmax and Ik values reveal that the obligate understory species, B. prolifera and E. obtusa, are shade-adapted whereas G. radula, a low intertidal and shallow subtidal dominant, is sun-adapted. Low C: X ratios consistent with a high nutrient environment and high rates of productivity were found in all three species. Net photosynthesis to respiration (Pn:R) ratios were fairly constant for B. prolifera and E. obtusa, implying that then photosynthetic processes were governed more by seasonal variations in irradiance than by instantaneous light availability. The Pn: R ratio of G. radula was variable, suggesting that this species is more responsive to rapid fluctuations in irradiance and may therefore be adapted for rapid growth during periods of high irradiance.  相似文献   

14.
15.
    
Territorial damselfish are important herbivores on coral reefs because they can occupy a large proportion of the substratum and modify the benthic community to promote the cover of food algae. However, on coastal coral reefs damselfish occupy habitats that are often dominated by unpalatable macroalgae. The aim of this study was to examine whether damselfish can maintain distinctive algal assemblages on a coastal reef that is seasonally dominated by Sargassum (Magnetic Island, Great Barrier Reef). Here, three abundant species (Pomacentrus tripunctatus, P. wardi and Stegastes apicalis) occupied up to 60% of the reef substrata. All three species promoted the abundance of food algae in their territories. The magnitudes of the effects varied among reef zones, but patterns were relatively stable over time. Damselfish appear to readily co-exist with large unpalatable macroalgae as they can use it as a substratum for promoting the growth of palatable epiphytes. Damselfish territories represent patches of increased epiphyte load on macroalgae, decreased sediment cover, and enhanced cover of palatable algal turf.  相似文献   

16.
The vertical distribution of algal biomass in the bed sediment and the seasonal development of benthic algae on stones and fine-grained sediments were studied in a small unshaded stream. In addition, field experiments were conducted on the role of irradiance and phosphorus in regulating algal biomass. We found that algal biomass was high at a sediment depth of ten centimetres. Comparison of studies on algal biomass where different depths of the sediment are used should therefore be made with caution. Substrata-dependent differences in algal biomass development were substantial. While algal biomass development on stones was controlled by macroinvertebrate grazing, that on the fine-grained sediment followed the dynamics of incident irradiance, but was attenuated by sediment rebedding. Because of the high grazing pressure on algal biomass on stony substrata, no significant response to phosphorus enrichment was attained. In contrast, algal biomass development on fine-grained sediments was phosphorus-limited. Heavy shading of the fine-grained sediments did not significantly affect algal biomass development, thus suggesting that phosphorus limitation prevents algae from fully utilizing the light resource in this stream. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
The photosynthetic activity of dominant phytoplankton in eutrophic shallow lake was investigated by the autoradiographic method in 1979 and 1980. It was shown by light and dark field microscopy that all species of Cyanophyta (Oscillatoria redekei, Oscillatoria agardhii, Aphanizomenon flos-aquae) were characterized by a continuously high uptake of NaH14CO3. Similarly high photosynthetic activity was observed during the occurrence of Cryptomonas sp. and nanoplankton. Contrary to these observations, diatoms showed remarkably high portions of photosynthetically inactive biomass when their development was abundant. The reasons for this discrepancy between high biomass of diatoms and relatively low primary production (measured by the 14C-method and autoradiography) are discussed.  相似文献   

19.
Photosynthetic characteristics at high measurement irradiance were analyzed for single leaves of two C3 and one C4 species grown under twenty one combinations of irradiance level, irradiance duration, and air temperature in order to test the idea that photosynthetic characteristies developed by leaves in different environments are controlled by the daily amount of photosynthesis. Photosynthetic rates per unit area and mesophyll conductances at 25°C and air levels of CO2 and O2, and parameters for two photosynthesis models were used to characterize the photosynthetic properties of the leaves. Leaves with highest values of the photosynthetic parameters for each species were often developed in environments with irradiance levels below saturation for photosynthesis, and with only 12 hours of irradiance per day. Lower air temperature during growth increased the photosynthetic characteristics for a given irradiance regime. Photosynthetic characteristics had higher correlation coefficients with daily photosynthesis of mature leaves divided by 24-hour leaf elongation rates of young leaves, than with daily photosynthesis alone, indicating that photosynthetic characteristics may be related to a balance between photosynthesis and leaf expansion.  相似文献   

20.
The effects of river diversion on phytoplankton primary production and biomass in the downstream part of two rivers were studied in relation to physical and chemical variables. These rivers, situated north of the 52nd parallel, are characteristic of oligotrophic systems with phytoplankton primary production less than 10.76 mg C m–2 h–1, chlorophyll -a lower than 3.0 mg m–3 and biomass between 118–1007 mg m–3. The decrease in flow favored the establishment of an algal biomass approximately two times greater then that present before diversion. This increase in biomass was associated in one river with an increase of 2.5 times of the mean primary production. In the other river the primary production per unit of surface area remained stable but increased when expressed by unit volume, due to a great decrease in underwater light penetration, consequence of inorganic particular matter increase.
Facteurs contrôlant la production primaire dens deux rivières soumises a une forte réduction de débit
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号