共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyanobacteria have developed various response mechanisms in long evolution to sense and adapt to external or internal changes under abiotic stresses. The signal transduction system of a model cyanobacterium Synechocystis sp. PCC 6803 includes mainly two-component signal transduction systems of eukaryotic-type serine/threonine kinases (STKs), on which most have been investigated at present. These two-component systems play a major role in regulating cell activities in cyanobacteria. More and more co-regulation and crosstalk regulations among signal transduction systems had been discovered due to increasing experimental data, and they are of great importance in corresponding to abiotic stresses. However, mechanisms of their functions remain unknown. Nevertheless, the two signal transduction systems function as an integral network for adaption in different abiotic stresses. This review summarizes available knowledge on the signal transduction network in Synechocystis sp. PCC 6803 and biotechnological implications under various stresses, with focuses on the co-regulation and crosstalk regulations among various stress-responding signal transduction systems. 相似文献
2.
Abiotic stresses resulting from water deficit, high salinity or periods of drought adversely affect plant growth and development and represent major selective forces during plant evolution. The raffinose family oligosaccharides (RFOs) are synthesised from sucrose by the subsequent addition of activated galactinol moieties donated by galactinol. RFOs are characterised as compatible solutes involved in stress tolerance defence mechanisms, although evidence also suggests that they act as antioxidants, are part of carbon partitioning strategies and may serve as signals in response to stress. The key enzyme and regulatory point in RFO biosynthesis is galactinol synthase (GolS), and an increase of GolS in expression and activity is often associated with abiotic stress. It has also been shown that different GolS isoforms are expressed in response to different types of abiotic stress, suggesting that the timing and accumulation of RFOs are controlled for each abiotic stress. However, the accumulation of RFOs in response to stress is not universal and other functional roles have been suggested for RFOs, such as being part of a carbon storage mechanism. Transgenic Arabidopsis plants with increased galactinol and raffinose concentrations had better ROS scavenging capacity, while many sugars have been shown in vitro to have antioxidant activity, suggesting that RFOs may also act as antioxidants. The RFO pathway also interacts with other carbohydrate pathways, such as that of O‐methyl inositol (OMI), which shows that the functional relevance of RFOs must not be seen in isolation to overall carbon re‐allocation during stress responses. 相似文献
3.
Plant miRNAs and abiotic stress responses 总被引:4,自引:0,他引:4
MicroRNAs (miRNAs) are endogenous approximate 22 nucleotide (nt) small non-coding regulatory RNAs that play important roles in plants by targeting mRNAs for cleavage or translational repression. Plant miRNAs were described 10 years later than animal miRNAs did; there are some differences between them in terms of biogenesis and mechanism of function. Furthermore, plant miRNAs have been shown to be involved in various stress responses, such as oxidative, mineral nutrient deficiency, dehydration, and even mechanical stimulus. In this review, we focus on the current understanding of biogenesis and regulatory mechanisms of plant miRNAs. We also highlight specific examples of miRNAs, which are important regulators for plant abiotic stress responses. 相似文献
4.
植物逆境胁迫抗性的功能基因组研究策略 总被引:2,自引:0,他引:2
植物对逆境胁迫抗性的功能基因组研究主要是寻找胁迫抗性位点在相关物种基因组中的保守位置,发现胁迫反应中的高度保守序列,确定植物胁迫反应的调控机理,进而得到植物对逆境胁迫抗性的关键代谢途径和其中的关键调控因子,为进一步选择用于改良植物对逆境胁迫抗性的关键基因奠定基础。本文从主要模式植物(苔藓类植物、复苏植物、盐土植物和甜土植物)、主要技术策略(基因的差异表达分析、基因表达序列标签、cDNA芯片技术。基因表达序列分析和基因敲除和突变体筛选分析)和生物信息学方法(数据分析的生物信息学方法设计到序列比较、比较基因组学、电子克隆)等三个方面对国内外植物逆境胁迫抗性的功能基因组研究策略作了全面综述。 相似文献
5.
6.
Activation tagging in indica rice identifies ribosomal proteins as potential targets for manipulation of water‐use efficiency and abiotic stress tolerance in plants 下载免费PDF全文
Mazahar Moin Achala Bakshi Anusree Saha M. Udaya Kumar Attipalli R. Reddy K. V. Rao E. A. Siddiq P. B. Kirti 《Plant, cell & environment》2016,39(11):2440-2459
We have generated 3900 enhancer‐based activation‐tagged plants, in addition to 1030 stable Dissociator‐enhancer plants in a widely cultivated indica rice variety, BPT‐5204. Of them, 3000 were screened for water‐use efficiency (WUE) by analysing photosynthetic quantum efficiency and yield‐related attributes under water‐limiting conditions that identified 200 activation‐tagged mutants, which were analysed for flanking sequences at the site of enhancer integration in the genome. We have further selected five plants with low Δ13C, high quantum efficiency and increased plant yield compared with wild type for a detailed investigation. Expression studies of 18 genes in these mutants revealed that in four plants one of the three to four tagged genes became activated, while two genes were concurrently up‐regulated in the fifth plant. Two genes coding for proteins involved in 60S ribosomal assembly, RPL6 and RPL23A, were among those that became activated by enhancers. Quantitative expression analysis of these two genes also corroborated the results on activating–tagging. The high up‐regulation of RPL6 and RPL23A in various stress treatments and the presence of significant cis‐regulatory elements in their promoter regions along with the high up‐regulation of several of RPL genes in various stress treatments indicate that they are potential targets for manipulating WUE/abiotic stress tolerance. 相似文献
7.
8.
9.
V. Podia D. Milioni M. Martzikou K. Haralampidis 《Plant biology (Stuttgart, Germany)》2018,20(2):307-317
- Abiotic stress is one of the key parameters affecting plant productivity. Drought and soil salinity, in particular, challenge plants to activate various response mechanisms to withstand these adverse growth conditions. While the molecular events that take place are complex and to a large extent unclear, the plant hormone abscisic acid (ABA) is considered a major player in mediating the adaptation of plants to stress.
- Here we report the identification of an ABA‐insensitive mutant from Arabidopsis thaliana. A combination of molecular, genetic and physiology approaches were implemented, to characterise the AtRASD1 locus (A BA D ROUGHT 相似文献
10.
11.
《遗传学报》2022,49(8):715-725
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses. 相似文献
12.
13.
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS‐based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome 相似文献
14.
. G. Erolu C. Cabral S. Ravnskov H. Bak Topbjerg B. Wollenweber 《Plant biology (Stuttgart, Germany)》2020,22(5):863-871
- Soil salinity severely affects and constrains crop production worldwide. Salinity causes osmotic and ionic stress, inhibiting gas exchange and photosynthesis, ultimately impairing plant growth and development. Arbuscular mycorrhiza (AM) have been shown to maintain light and carbon use efficiency under stress, possibly providing a tool to improve salinity tolerance of the host plants. Thus, it was hypothesized that AM will contribute to improved growth and yield under stress conditions.
- Wheat plants (Triticum aestivum L.) were grown with (AMF+) or without (AMF?) arbuscular mycorrhizal fungi (AMF) inoculation. Plants were subjected to salinity stress (200 mm NaCl) either at pre‐ or post‐anthesis or at both stages. Growth and yield components, leaf chlorophyll content as well as gas exchange parameters and AMF colonization were analysed.
- AM plants exhibited a higher rate of net photosynthesis and stomatal conductance and lower intrinsic water use efficiency. Furthermore, AM wheat plants subjected to salinity stress at both pre‐anthesis and post‐anthesis maintained higher grain yield than non‐AM salinity‐stressed plants.
- These results suggest that AMF inoculation mitigates the negative effects of salinity stress by influencing carbon use efficiency and maintaining higher grain yield under stress.
15.
Diversity,distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress 总被引:1,自引:0,他引:1
Inès Slama Chedly Abdelly Alain Bouchereau Tim Flowers Arnould Savouré 《Annals of botany》2015,115(3):433-447
Background and Aims Osmolytes are low-molecular-weight organic solutes, a broad group that encompasses a variety of compounds such as amino acids, tertiary sulphonium and quaternary ammonium compounds, sugars and polyhydric alcohols. Osmolytes are accumulated in the cytoplasm of halophytic species in order to balance the osmotic potential of the Na+ and Cl− accumulated in the vacuole. The advantages of the accumulation of osmolytes are that they keep the main physiological functions of the cell active, the induction of their biosynthesis is controlled by environmental cues, and they can be synthesized at all developmental stages. In addition to their role in osmoregulation, osmolytes have crucial functions in protecting subcellular structures and in scavenging reactive oxygen species.Scope This review discusses the diversity of osmolytes among halophytes and their distribution within taxonomic groups, the intrinsic and extrinsic factors that influence their accumulation, and their role in osmoregulation and osmoprotection. Increasing the osmolyte content in plants is an interesting strategy to improve the growth and yield of crops upon exposure to salinity. Examples of transgenic plants as well as exogenous applications of some osmolytes are also discussed. Finally, the potential use of osmolytes in protein stabilization and solvation in biotechnology, including the pharmaceutical industry and medicine, are considered. 相似文献
16.
17.
18.
OsUGE-1 is known to be induced by various abiotic stresses, but its exact function in plants is unclear. In the present study, OsUGE-1 was over-expressed in Arabidopsis, transgenic plants conferred tolerance to salt, drought and freezing stress without altering plant morphology. In addition, transgenic plants showed a higher level of the soluble sugar raffinose than did wild-type plants. Our results suggest that elevated level of raffinose with over-expressed OsUGE-1 resulted in enhanced tolerance to abiotic stress. Thus, the gene may be applied to improve tolerance to abiotic stress in crops. 相似文献
19.
Chickpea (Cicer arietinum L.) is an important food legume crop, particularly for the arid regions including Indian subcontinent. Considering the detrimental effect of drought, temperature and salt stress on crop yield, efforts have been initiated in the direction of developing improved varieties and designing alternate strategies to sustain chickpea production in adverse environmental conditions. Identification of genes that confer abiotic stress tolerance in plants remains a challenge in contemporary plant breeding. The present study focused on the identification of abiotic stress responsive genes in chickpea based on sequence similarity approach exploiting known abiotic stress responsive genes from model crops or other plant species. Ten abiotic stress responsive genes identified in other plants were partially amplified from eight chickpea genotypes and their presence in chickpea was confirmed after sequencing the PCR products. These genes have been functionally validated and reported to play significant role in stress response in model plants like Arabidopsis, rice and other legume crops. Chickpea EST sequences available at NCBI EST database were used for the identification of abiotic stress responsive genes. A total of 8,536 unique coding long sequences were used for identification of chickpea homologues of these abiotic stress responsive genes by sequence similarity search (BLASTN and BLASTX). These genes can be further explored towards achieving the goal of developing superior chickpea varieties providing improved yields under stress conditions using modern molecular breeding approaches. 相似文献