首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estuarine ecosystems are easily deteriorated by organic pollution because of its high primary productivity. To identify chemical proxies for the possible sources of autochthonous organic matter [phytoplankton-derived particulate organic material (POM), macroalgae and seagrass], we measured C:N:P and the ratios of carbon and nitrogen stable isotopes (δ13C and δ15N values) in two estuarine environments, the polyhaline lagoon, Lake Nakaumi, and the oligohaline lagoon, Lake Shinji, in Japan. Due to vigorous photosynthesis, the δ13C of phytoplankton-derived POM in Lake Nakaumi was larger than what would normally be expected from estuarine salinity gradients. Concentrations of nitrogen and phosphorus did not affect the δ13C of phytoplankton-derived POM. The δ15N of all plants was uniform and was higher than the δ15N of sediments. The seagrass showed a higher C:N ratio than POM and macroalgae, while the macroalgae showed a higher N:P ratio. Thus, simultaneous evaluation of C:N and N:P ratios would distinguish these three plant groups, and it would be possible to identify the source plants from the elemental ratios of the sediments.  相似文献   

2.
We present a comparison of feather stable isotope (δ13C, δ15N) patterns representing the habitat and diet conditions for two subspecies of willow warblers Phylloscopus trochilus that breed in parapatry, but winter in different regions of sub‐Saharan Africa. Previous analyses have shown that on average winter moulted innermost primaries (P1) show subspecific differences in δ15N values, although individuals show substantial variation for both δ13C and δ15N within the subspecies. We examined whether corresponding variation in the timing of the winter moult, as reflected by consistent intra‐wing correlations for individual's δ13C and δ15N values, could explain some of the previously observed isotopic variation. Further, differential subspecific adaptations to winter precipitation patterns across Africa might result in a variable degree of site fidelity or itinerancy during moult. We found no consistent trend in isotopic values from innermost to outermost primaries, thus inter‐individual variation in the timing of moult does not explain the subspecific isotopic variation for P1. Patterns in wing feather δ13C and δ15N values indicated that 41% of the individuals from both subspecies shifted their diet or habitats during winter moult. Importantly, despite well‐documented itinerancy in willow warblers during the winter, 59% of the individuals had feather isotope values consistent with stable use of habitats or diets during winter moult. Repeatability analyses suggest that individuals of both subspecies initiate moult in similar habitats from year‐to‐year while feeding on isotopically similar diets.  相似文献   

3.
Differences in the stable carbon isotope ratios of plants utilizing the C3 vs. C4 photosynthetic pathway have been used to broadly identify the natal host origins of herbivorous insects. This study explored whether adequate variation exists between the carbon isotope ratios of different C3 plants in the host range of Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae) to enable accurate identification of natal host‐plant species. Isotope ratio mass spectrometry (IRMS) analysis of 13C/12C ratios of moths reared on four crop plant species [Gossypium hirsutum (L.), Nicotiana tabacum L., Glycine max (L.) Merrill, and Arachis hypogaea L.] and two common weed species [Geranium carolinianum L. and Linaria canadensis (L.) Chaz.] revealed a range of δ13C values within that expected for plants utilizing the C3 photosynthetic pathway. Analysis of vegetative and reproductive tissues from the plants utilized in the study resulted in statistically different δ13C values for some plant species; nevertheless, the range of δ13C values observed for many plant species overlapped. Significant differences in mean δ13C values were detected between groups of moths reared on different host‐plant species, but there was no significant correlation between the δ13C values of moths vs. the δ13C value of plant tissue on which they were reared. Feral tobacco budworm moths collected over 3 years were found to have carbon isotope ratios consistent with those having fed on C3 plants, confirming little utilization of C4 plant species by the insect. Results demonstrate that within the range of C3 host plants tested, carbon isotope signatures are not sufficiently unique to enable a reliable determination of natal origin of feral tobacco budworm with current IRMS technology.  相似文献   

4.
How can terrestrial animals survive in a desert with scant primary productivity? The Peruvian coastal desert is hyper‐arid, but faces one of the world's most productive marine ecosystems, the Peru–Chile cold current. Given the stark difference in productivity between these adjacent ecosystems, we expected to find strong linkages connecting the terrestrial and marine food web. We investigated how marine resources are incorporated in the diet, and influence the distribution of terrestrial consumers (geckos, scorpions, solifuges and darkling beetles). Stomach contents from geckos, and δ13C and δ15N values of geckos and other terrestrial consumers suggest that marine green algae of the genus Ulva provide energy and nutrients to the terrestrial food web. Isotopic values suggest that amphipods, which feed on stranded Ulva, make marine resources available to terrestrial predators by moving between the intertidal and supratidal zones. The relative contribution of terrestrial and algal carbon sources varied among terrestrial predators, because scorpions assimilated a lower proportion of energy from Ulva than did geckos and solifuges. These δ13C patterns reflected differences in the spatial distribution of consumers. Our study supports the idea that in places where ecosystems with contrasting productivity levels are spatially juxtaposed, it is not possible to understand the structure and dynamics of food webs without taking into account the effects of energy and nutrients flowing from adjacent ecosystems. In contrast to other studied systems, especially those in Baja California, our site in Peru receives very little rainfall and the amount of precipitation is not affected by El Niño events. The near absence of rainfall promotes an extreme dependence of terrestrial consumers on marine resources, and causes permanent indirect food‐web effects that are affected by temporal variability in marine productivity, rather than temporal patterns of plant growth.  相似文献   

5.
6.
Assays of elemental and stable‐isotope ratios across growth increments of scales have the potential to provide a non‐lethal alternative to otolith chemistry for identifying migration and ontogenetic trophic shifts. A central assumption when employing scales as otolith analogues is that any scale from an individual will provide equivalent information about the chemical history of that fish. This assumption was investigated with multiple scales from wild and captive euryhaline Atlantic tarpon Megalops atlanticus from the north‐west Gulf of Mexico. Elemental (Sr:Ca) and isotope‐ratio (δ13C and δ15N) life‐history profiles were compared among multiple scales from each fish. All three chemical proxies showed highly consistent patterns among non‐regenerated scales, while patterns in regenerated scales diverged, indicating rapid regrowth of interior scale material at the onset of regeneration. Patterns of Sr:Ca and δ13C covaried, supporting their use as salinity proxies, while δ15N patterns were consistent with ontogenetic diet shifts. Water samples taken from aquaria holding captive fish were used to calculate partition coefficients for a suite of elements in M. atlanticus scales for future quantification of migratory movements in the region. Together, these results support the assumption that non‐regenerated scales from individual M. atlanticus provide equivalent chemical histories, further validating their use as a viable non‐lethal alternative to otoliths.  相似文献   

7.
Abstract. Woody plants are increasing in many grassland and savanna ecosystems around the world. As a case in point, the Edwards Plateau of Texas, USA, is a vast region (93 000 km2) in which rapid woody encroachment appears to be occurring. The native vegetation (prior to the Anglo‐European settlement 150–200 yr ago) and the biogeochemical consequences of woody encroachment in this region, however, are poorly understood. To assess these matters we measured plant and soil δ13C, soil organic C and soil N content from grasslands and two important woody patch types (mature Quercus virginiana clusters and Juniperus ashei woodlands) in this region. Soil δ13C values showed that relative productivity of C3 species has increased in grassland and both woody habitats in recent times. δ13C of SOC in grasslands and Q. virginiana clusters increased with depth from the litter layer to 30 cm (grasslands =?21 to ?13‰Q. virginiana clusters =?27 to ?17‰) and were significantly different between habitats at all depths, indicating that Q. virginiana has been a long‐term component of the landscape. In J. ashei woodlands, soil δ13C values (at 20–30 cm depth) near the woodland edge (‐13‰) converged with those of an adjacent grassland (‐13‰) while those from the woodland interior (‐15‰) remained distinct, indicating that the woodland has been present for many years but has recently expanded. Concentrations and densities of SOC and total N were generally greater in woody patches than in grasslands. However, differences in the amount of SOC and N stored beneath the two woody patch types indicates that C and N sequestration potentials are species dependent.  相似文献   

8.
Natural abundance stable‐isotope analysis (δ13C and δ15N) and C:N ratios were used to study the ammocoete phase of two common non‐parasitic lamprey species (least brook lamprey Lampetra aepyptera and American brook lamprey Lethenteron appendix) in two tributaries of the Ohio River (U.S.A.). The C:N ratios suggest that each species employs different lipid accumulation strategies to support its metamorphosis and recruitment into an adult animal. Ammocoete δ13C values generally increased with increasing C:N values. In contrast to δ13C, ammocoete δ15N values were weakly related to the total length (LT) in L. aepyptera, but positively correlated to both LT and C:N ratios in L. appendix. In L. appendix, C:N also correlated positively with LT, and presumably age. A Bayesian mixing model using δ13C and δ15N was used to estimate nutritional subsidies of different potential food resources to ammocoetes at each site. The models suggested that although nutritional subsidies to ammocoetes varied as a function of site, ammocoetes were generally reliant on large contributions (42–62% at three sites) from aquatic plants. Contributions from aquatic sediment organic matter were also important at all sites (32–63%) for ammocoetes, with terrestrially derived plant materials contributing smaller amounts (4‐33%). These findings provide important insights into the feeding ecology and nutrition of two species of lampreys. They also suggest that similar and other quantitative approaches are required to (1) fully understand how the observed stable‐isotopes ratios are established in ammocoetes and (2) better assess ammocoete nutritional subsidies in different natal streams.  相似文献   

9.
  • Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey‐derived carbon backbones of amino acids for the success of Dionaea's carnivorous life‐style.
  • The present study aimed at characterizing the metabolic fate of 15N and 13C in amino acids acquired from double‐labeled insect powder. We tracked changes in plant amino acid pools and their δ13C‐ and δ15N‐signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non‐fed traps and attached petioles of Dionaea).
  • Isotope signatures (i.e., δ13C and δ15N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen‐rich transport compounds (i.e., amides) during peak time of prey digestion increased 15N‐ relative to 13C‐ abundances in amino acid pools. After completion of prey digestion, 13C in amino acid pools was progressively exchanged for newly fixed 12C. The latter process was most evident for non‐fed traps and attached petioles of plants that had received ample insect powder.
  • We argue that prey‐derived amino acids contribute to respiratory energy gain and loss of 13CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino‐nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).
  相似文献   

10.
We use stable isotope data to investigate the role of winter habitat use in altering the breeding phenology of yellow warblers Setophaga petechia. We first confirm that δ13C and δ15N isotopic signatures vary with winter habitat use in this species. We then examine the relationship between winter habitat use, breeding phenology and productivity within four age‐sex‐classes, since life history theory would predict that carry‐over effects should vary with age and gender. The δ13C signatures of yellow warblers using riparian habitats over winter were more depleted than the signatures of those using agricultural or scrub habitat. Individuals on the Pacific coast of Mexico were also more δ15N enriched than those on the southern Gulf of Mexico. δ13C and δ15N signatures were only correlated with earlier clutch initiation and subsequent higher productivity in first‐breeding‐season females. We estimate that shifts in δ13C equivalent to a shift from scrub to riparian winter habitat would be associated with the production of 0.8 more fledglings by yearling females. Pre‐breeding events that influence the timing of breeding could also influence the reproductive performance of older males and females, but we found little evidence that winter habitat use influenced breeding season phenology in these birds.  相似文献   

11.
Climate change and nitrogen deposition affect biodiversity and ecosystem functioning, but interactive effects of these global change drivers are poorly understood. We analysed single and interactive effects of nitrogen (N) fertilisation and drought on the growth performance of Calluna vulgaris. We measured biomass production and allocation, tissue nutrient (N, phosphorus (P) and carbon (C)) concentrations, N allocation patterns (using 15N tracer) and plant's water status (using δ 13C signatures) as response variables in a 2-year greenhouse experiment. N fertilisation increased biomass production and biomass shoot:root ratios. 15N allocation patterns indicated an increasing aboveground N allocation following N fertilisation. Tissue δ 13C signatures were higher in N-fertilised plants. Plant responses to drought were weak. We found strong antagonistic interaction effects of N fertilisation and drought for biomass production. δ 13C values peaked when N-fertilised plants were subjected to drought, indicating that N fertilisation increased the evaporative demands of Calluna plants, likely due to increased biomass shoot:root ratios, which in turn resulted in higher drought susceptibility. As an important consequence, even slight drought events may weaken the competitiveness of Calluna when interacting with enhanced airborne N loads. Single-factor studies, thus, need to be complemented by multi-factor analyses to assess conceivable impacts of co-occurring global change drivers.  相似文献   

12.
Abstract: Stable isotope studies of food webs in floodplains, large rivers, mangroves, and seagrasses have shown that, although a large proportion of the biomass may come from higher plants, microalgae provide a disproportionate amount of carbon assimilated by metazoan consumers. Evidence is building that this may also be the case for streams, especially those in the tropics. At the level of individual consumer species we also see that the apparent diet may not be reflected in the carbon assimilated. Tropical streams commonly have omnivore‐detritivore species that potentially show this phenomenon. We tested these concepts in four moderately shaded sites in a stream in well‐preserved Atlantic rainforest at Ilha Grande, Rio de Janeiro. We sampled aquatic insects, shrimps and fish as well as potential terrestrial and aquatic primary food sources. Carbon stocks from terrestrial sources predominated over carbon of algal origin (>99% of total). The primary sources of carbon showed distinctly different isotopic signatures: terrestrial sources had δ13C values close to ?30‰, microalgae were ?20‰ and macroalgae were ?25‰. All fauna had δ13C values consistent with a carbon source derived from microalgae. Baetid mayflies and atyid shrimps exert a strong grazing pressure on periphyton and organic sediments but appear to assimilate predominantly microalgae. The palaemonid shrimp Macrobrachium olfersi also ingests large amounts of detritus of terrestrial origin, but apparently assimilates animal prey with algal δ13C signatures. These results support the growing view that tropical stream food chains are primarily algal based.  相似文献   

13.
Energy or nutritional constraints associated to female dietary shifts during the clutch production period may play a role in generating intra‐clutch egg size variation in yellow‐legged gulls Larus michahellis. To explore this possibility, we determined albumen δ13C and δ15N values in three‐egg clutches (modal clutch size) from three different breeding episodes: Ebro Delta 2004 and 2006, and Columbretes Islands 2004. Rather than a shift in females’ diet, consistent intra‐clutch patterns of variation in egg size and albumen isotopic values (particularly in the case of albumen δ13C, which values held constant throughout the laying sequence) pointed to an intrinsic mechanism as the most feasible cause for the relatively smaller size of third/last‐laid eggs. However, diet “quality” for breeding females seemed to affect intra‐clutch egg size variation. In particular, a deficit of specific nutrients for egg formation associated to refuse scraps exploitation (as suggested by depleted albumen isotopic values) likely resulted in the more apparent intra‐clutch egg size profile for the Ebro Delta 2004. In the absence of dietary shifts, the observation of consistently higher δ15N values for third‐albumens suggested a greater contribution of endogenous resources to their synthesis, as conversion of stored reserves into egg proteins results in greater isotopic fractionation, thereby yielding enriched isotopic signatures (particularly for δ15N that shows greater isotopic fractionation with respect to that commonly assumed for δ13C). We point to reabsorbed material derived from the hormonally‐mediated regression of the female reproductive system (which is likely the intrinsic mechanisms resulting in the intra‐clutch pattern of egg size variation: the hormonal hypothesis) as the most feasible endogenous source of nutrients for the synthesis of last‐laid eggs, as optimize reproductive investment and maximize female fitness.  相似文献   

14.
Increasing biodiversity has been linked to higher primary productivity in terrestrial ecosystems. However, the underlying ecophysiological mechanisms remain poorly understood. We investigated the effects of surrounding species richness (monoculture, two‐ and four‐species mixtures) on the ecophysiology of Lithocarpus glaber seedlings in experimental plots in subtropical China. A natural rain event isotopically labelled both the water uptaken by the L. glaber seedlings and the carbon in new photoassimilates through changes of photosynthetic discrimination. We followed the labelled carbon (C) and oxygen (O) in the plant–soil–atmosphere continuum. We measured gas‐exchange variables (C assimilation, transpiration and above‐ and belowground respiration) and δ13C in leaf biomass, phloem, soil microbial biomass, leaf‐ and soil‐respired CO2 as well as δ18O in leaf and xylem water. The 13C signal in phloem and respired CO2 in L. glaber in monoculture lagged behind those in species mixture, showing a slower transport of new photoassimilates to and through the phloem in monoculture. Furthermore, leaf‐water 18O enrichment above the xylem water in L. glaber increased after the rain in lower diversity plots suggesting a lower ability to compensate for increased transpiration. Lithocarpus glaber in monoculture showed higher C assimilation rate and water‐use efficiency. However, these increased C resources did not translate in higher growth of L. glaber in monoculture suggesting the existence of larger nongrowth‐related C sinks in monoculture. These ecophysiological responses of L. glaber, in agreement with current understanding of phloem transport are consistent with a stronger competition for water resources in monoculture than in species mixtures. Therefore, increasing species diversity in the close vicinity of the studied plants appears to alleviate physiological stress induced by water competition and to counterbalance the negative effects of interspecific competition on assimilation rates for L. glaber by allowing a higher fraction of the C assimilated to be allocated to growth in species mixture than in monoculture.  相似文献   

15.
The relationship among water use efficiency (WUE), productivity and carbon isotopic composition (δ13C) in white spruce (Picea glauca (Moench) Voss) seedlings was investigated. Sixteen hundred seedlings representing 10 controlled crosses were planted in the field in individual buried sand-filled cylinders. The soil water content in the cylinders was measured using time domain reflectometry over two growing seasons and seedling water use determined by water balance. Two watering treatments were imposed: irrigation and dry land. There was significant (1.6–2.0%c) genetic variation in needle δ13C. Ranking of crosses in terms of δ13C was generally maintained over watering treatments and there was not a significant genetic versus environmental interaction. There was a positive correlation between δ13C and both intrinsic and long-term WUE (more positive δ13C with increased WUE) and between δ13C and productivity, suggesting a correlation due to variation in photosynthetic capacity. Root to shoot ratios did not increase in water-stressed plants, indicating that responses to drought were primarily at the level of gas exchange, rather than through morphological changes. Our results indicate that it should be possible to use δ13C as a surrogate for WUE and to select white spruce genotypes for high WUE without compromising yield.  相似文献   

16.
1. Methanogenic carbon can be incorporated by methane‐oxidising bacteria, leading to a 13C‐depleted stable carbon isotopic composition (δ13C) of chironomids that feed on these microorganisms. This has been shown for the chironomid tribe Chironomini, but very little information is available about the δ13C of other abundant chironomid groups and the relationship between chironomid δ13C and methane production in lakes. 2. Methane flux was measured at the water surface of seven lakes in Sweden. Furthermore, fluxes from the sediments to the water column were measured in transects in two of the lakes. Methane fluxes were then compared with δ13C of chitinous chironomid remains isolated from the lake surface sediments. Several different chironomid groups were examined (Chironomini, Orthocladiinae, Tanypodinae and Tanytarsini). 3. Remains of Orthocladiinae in the seven study lakes had the highest δ13C values (?31.3 to ?27.0‰), most likely reflecting δ13C of algae and other plant‐derived organic matter. Remains of Chironomini and Tanypodinae had lower δ13C values (?33.2 to ?27.6‰ and ?33.6 to ?28.0‰, respectively). A significant negative correlation was observed between methane fluxes at the lake surface and δ13C of Chironomini (r = ?0.90, P = 0.006). Methane release from the sediments was also negatively correlated with δ13C of Chironomini (r = ?0.67, P = 0.025) in the transect samples obtained from two of the lakes. The remains of other chironomid taxa were only weakly or not correlated with methane fluxes measured in our study lakes (P > 0.05). 4. Selective incorporation of methane‐derived carbon can explain the observed correlations between methane fluxes and δ13C values of Chironomini. Remains of this group might therefore have the potential to provide information about past changes in methane availability in lakes using sediment records. However, differences in productivity, algal δ13C composition and the importance of allochthonous organic matter input between the studied lakes may also have influenced Chironomini δ13C. More detailed studies with a higher number of analysed samples and detailed measurement of δ13C of different ecosystem components (e.g. methane, dissolved inorganic carbon) will be necessary to further resolve the relative contribution of different carbon sources to δ13C of chironomid remains.  相似文献   

17.
This study investigated the trophic shift of young‐of‐the‐year (YOY) thinlip grey mullet Liza ramada and golden grey mullet Liza aurata during their recruitment in a salt marsh located on the European Atlantic Ocean coast. Stable‐isotope signatures (δ13C and δ15N) of the fishes followed a pattern, having enrichments in 13C and 15N with increasing fork length (LF): δ13C in fishes < 30 mm ranged from ?19.5 to ?15.0‰, whereas in fishes > 30 mm δ13C ranged from ?15.8 to ?12.7‰, closer to the level in salt‐marsh food resources. Large differences between the δ15N values of mugilids and those of food sources (6·0‰ on average) showed that YOY are secondary consumers, similar to older individuals, when feeding in the salt marsh. YOY mugilids shift from browsing on pelagic prey to grazing on benthic resources from the salt marsh before reaching 30 mm LF. The results highlight the role of European salt marshes as nurseries for juvenile mugilids.  相似文献   

18.
Leaf wax n‐alkane δ2H values carry important information about environmental and ecophysiological processes in plants. However, the physiological and biochemical drivers that shape leaf wax n‐alkane δ2H values are not completely understood. It is particularly unclear why n‐alkanes in grasses are typically 2H‐depleted compared with plants from other taxonomic groups such as dicotyledonous plants and why C3 grasses are 2H‐depleted compared with C4 grasses. To resolve these uncertainties, we quantified the effects of leaf water evaporative 2H‐enrichment and biosynthetic hydrogen isotope fractionation on n‐alkane δ2H values for a range of C3 and C4 grasses grown in climate‐controlled chambers. We found that only a fraction of leaf water evaporative 2H‐enrichment is imprinted on the leaf wax n‐alkane δ2H values in grasses. This is interesting, as previous studies have shown in dicotyledonous plants a nearly complete transfer of this 2H‐enrichment to the n‐alkane δ2H values. We thus infer that the typically observed 2H‐depletion of n‐alkanes in grasses (as opposed to dicots) is because only a fraction of the leaf water evaporative 2H‐enrichment is imprinted on the δ2H values. Our experiments also show that differences in n‐alkane δ2H values between C3 and C4 grasses are largely the result of systematic differences in biosynthetic fractionation between these two plant groups, which was on average ?198‰ and?159‰ for C3 and C4 grasses, respectively.  相似文献   

19.
Microbial mats that inhabit gypsum deposits in ponds at Guerrero Negro, Baja California Sur, Mexico, developed distinct pigmented horizons that provided an opportunity to examine the fixation and flow of carbon through a trophic structure and, in conjunction with previous phylogenetic analyses, to assess the diagenetic fates of molecular δ13C biosignatures. The δ13C values of individual biomarker lipids, total carbon, and total organic carbon (TOC) were determined for each of the following horizons: tan‐orange (TO) at the surface, green (G), purple (P), and olive‐black (OB) at the bottom. δ13C of individual fatty acids from intact polar lipids (IPFA) in TO were similar to δ13C of dissolved inorganic carbon (DIC) in the overlying water column, indicating limited discrimination by cyanobacteria during CO2 fixation. δ13CTOC of the underlying G was 3‰ greater than that of TO. The most δ13C‐depleted acetogenic lipids in the upper horizons were the cyanobacterial biomarkers C17 n‐alkanes and polyunsaturated fatty acids. Bishomohopanol was 4 to 7‰ enriched, relative to alkanes and intact polar fatty acids (IPFA), respectively. Acyclic C20 isoprenoids were depleted by 14‰ relative to bishomohopanol. Significantly, ?[δ13CTOC ? δ13C∑IPFA] increased from 6.9‰ in TO to 14.7‰ in OB. This major trend might indicate that 13C‐enriched residual organic matter accumulated at depth. The permanently anoxic P horizon was dominated by anoxygenic phototrophs and sulfate‐reducing bacteria. P hosted an active sulfur‐dependent microbial community. IPFA and bishomohopanol were 13C‐depleted relative to upper crust by 7 and 4‰, respectively, and C20 isoprenoids were somewhat 13C‐enriched. Synthesis of alkanes in P was evidenced only by 13C‐depleted n‐octadecane and 8‐methylhexadecane. In OB, the marked increase of total inorganic carbon δ13C (δ13CTIC) of >6‰ perhaps indicated terminal mineralization. This δ13CTIC increase is consistent with degradation of the osmolyte glycine betaine by methylotrophic methanogens and loss of 13C‐depleted methane from the mat.  相似文献   

20.
Using bulk tissue and fatty acid 13C analysis we investigated major trophic pathways from soil microorganisms to microbial consumers to predators in conventional versus organic farming systems planted for the first time with maize. Organic farming led to an increase in microbial biomass in particular that of fungi as indicated by phospholipid fatty acids (PLFAs). Microbial PLFAs reflected the conversion from C3 to C4 plants by a shift in δ13C of 2‰, whereas the isotopic signal in fatty acids (FAs) of Collembola was much more pronounced. In the euedaphic Protaphorura fimata the δ13C values in maize fields exceeded that in C3 (soybean) fields by up to 10‰, indicating a close relationship between diet and vegetation cover. In the epedaphic Orchesella villosaδ13C values shifted by 4‰, suggesting a wider food spectrum including carbon of former C3 crop residues. Differences in δ13C of corresponding FAs in consumers and resources were assessed to assign food web links. P. fimata was suggested as root and fungal feeder in soybean fields, fungal feeder in conventional and leaf consumer in organically managed maize fields. O. villosa likely fed on root and bacteria under soybean, and bacteria and fungi under maize. Comparison of δ13C values in FAs of the cursorial spider Pardosaagrestis and O. villosa implied the latter as important prey species in soybean fields. In contrast, the web‐building spider Mangora acalypha showed no predator–prey relationship with Collembola. The determination of δ13C values in trophic biomarker FAs allowed detailed insight into the structure of the decomposer food web and identified diet‐shifts in both consumers at the base of the food web and in top predators in organic versus conventional agricultural systems. The results indicate changes in major trophic links and therefore carbon flux through the food web by conversion of conventional into organic farming systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号