首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diaphorina citri (Kuwayama) is a global pest of citrus that transmits the bacteria associated with the disease, Huanglongbing. Entomopathogenic fungi and the parasitoid Tamarixia radiata (Waterston) are important biological control agents of this pest and likely to interact in D. citri populations. As a basis for interaction studies, we determined the susceptibility of nymphs and adults of D. citri and adults of the parasitoid T. radiata to six fungal isolates from the species Beauveria bassiana s.l. (Bals.-Criv.) Vuill. (isolates B1 and B3), Metarhizium anisopliae s.s. (Metsch.) (Ma129 and Ma65) and Isaria fumosorosea Wize (I2 and Pae). We conducted experiments evaluating infection levels in all three insect groups following inoculation with a series of conidial concentrations (1 × 104–1 × 108 conidia mL?1). Results showed that D. citri nymphs and T. radiata were more susceptible to fungal isolates than D. citri adults. Overall, B. bassiana and M. anisopliae isolates caused the greatest infection compared with I. fumosorosea isolates in all three groups of insects. Isolates B1 (B. bassiana) and Ma129 (M. anisopliae) infected a greater proportion of adults and nymphs of D. citri, respectively. Both isolates of B. bassiana caused greater infection in T. radiata compared with isolates of the other fungal species. We propose that isolates B1 and Ma129 are the strongest candidates for control of D. citri. Our results represent the first report of entomopathogenic fungi infecting T. radiata, and the basis for future studies to design a biological control programme that uses both agents more efficiently against D. citri populations.  相似文献   

2.
In Slovakia, a diversity of entomopathogenic fungi (Ascomycota, Hypocreales) associated with outbreaks of Ips typographus was studied in 81 localities and as many as 113 in vitro cultures of five entomopathogenic species were isolated from infected individuals: Beauveria bassiana (87 isolates), B. pseudobassiana (14 isolates), B. caledonica (6 isolates), Lecanicillium lecanii (4 isolates) and Isaria farinosa (2 isolates). B. pseudobassiana is recorded in natural populations of I. typographus for the first time. Biological properties of selected Beauveria isolates, including colony growth, biomass production, conidia yield and pathogenicity to I. typographus adults, were studied in a series of laboratory bioassays and much intra- and interspecific variability was detected. B. bassiana isolates produced biomass or conidia at significantly higher rate than B. pseudobassiana and B. caledonica isolates. Two B. bassiana isolates were selected as the most virulent to bark beetle adults, demonstrating a mean LC50 ranging from 0.72 to 2.05?×?106 conidia ml?1, and were qualified as promising candidates for biocontrol of I. typographus. Their virulence was significantly higher than that of the mycoinsecticides Boverol®, which was used as a reference strain in the virulence bioassays.  相似文献   

3.
Seven non-basidiomycetic fungi, Aspergillus, Candida, Cladosporium, Fusarium, Monicillium, Trichoderma and Penicillium, and two basidiomycetic fungi, Pleurotus and Phanerochaete were isolated from a creosote-contaminated soil by using mineral salts medium and soil extract broth containing antibiotics. Soil contaminated with phenol, o-cresol, m-cresol and p-cresol was collected from the yard of a wood treatment plant in South Africa and inoculated with the strains of Aspergillus, Cladosporium, Fusarium, Monicillium, Penicillium and Phanerochaete, selected from the isolate. The soil in some of the treatment reactors was amended with nutrient supplements to give a C:N:P ratio of 25:5:1. A total of 18 duplicate treatments were established and incubated in the dark at 25°C for 70days. The soil in all the reactors was tilled weekly and moisture was maintained at 70% field capacity. Soil samples were collected every 2weeks for analysis of residual concentrations of the phenols tested, pH measurement and moisture content determination. The nutrient-supplemented treatments were more effective in degrading the phenols (between 84 and 100%) than those that were not supplemented. Barley, which was used as bulking agent enhanced the growth of the fungi and subsequently the degradation of the phenols. Inoculation with a mixture of the six fungal isolates promoted more phenol degradation than with single isolates.  相似文献   

4.
Amending a peat-based growing medium with 10% v/v spent mushroom compost, a source of fungal chitin and other nutrients, prolonged the persistence of entomopathogenic fungi (Metarhizium brunneum Petsch and Beauveria bassiana (Balsamo) Vuillemin; Hypocreales: Clavicipitaceae). This resulted in improved efficacy of M. brunneum against black vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) larvae compared with using inoculum without spent mushroom compost. B. bassiana only controlled larvae when used in combination with spent mushroom compost (75?±?7% reduction in live larvae). Mixing entomopathogenic fungal inoculum with spent mushroom compost and growing medium was as effective in controlling black vine weevil larvae as using spent mushroom compost colonised with M. brunneum or B. bassiana in the growing medium (80?±?12% reduction in live larvae). The former method is preferable since it does not require production and storage of colonised spent mushroom compost, or registration of new substrate formulations of M. brunneum or B. bassiana.  相似文献   

5.
The two-spotted spider mite Tetranychus urticae is an important pest of strawberry crops in Brazil and many other countries. Focus for biocontrol studies involving entomopathogenic fungi has been on three species from the genus Metarhizium: M. anisopliae sensu stricto (s.s.), M. brunneum and M. robertsii. Also, the species Beauveria bassiana has been studied for spider mite control and one isolate (ESALQPL63) is commercially available in Brazil. New and undescribed Metarhizium species have been found recently in Brazil and provide a pool of isolates with potential for biocontrol in Brazil and probably also elsewhere. The mortality of adult females of T. urticae when exposed to four new Brazilian species of Metarhizium was compared to the mortality when exposed to M. anisopliae s.s., M. brunneum, M. pingshaense, M. robertsii and Beauveria bassiana ESALQPL63. Fungal suspensions were sprayed onto mites at 107 conidia/mL with 0.05% Tween 80 in laboratory bio-assays. We measured total mortality and percentage sporulating cadavers 10 days after exposure and calculated median lethal time (LT50). The lowest LT50 (4.0 ± 0.17) was observed for mites treated with Metarhizium sp. Indet. 1 (ESALQ1638), which also performed well with respect to mortality after 10 days and capacity to sporulate from cadavers. Among the other little studied species tested, M. pingshaense (ESALQ3069 and ESALQ3222) and Metarhizium Indet. 2 (ESALQ1476) performed well and were comparable to B. bassiana (ESALQPL63). The new Metarhizium isolates and species thus showed potential for biological control.  相似文献   

6.
Insecticide resistance in the housefly Musca domestica is hampering pest management. However, entomopathogens, possibly in combination with insecticides, may have control potential against resistant houseflies. This study investigates the combination of the entomopathogenic fungus Beauveria bassiana and the neonicotinoid insecticide, imidacloprid against a susceptible and a resistant housefly strain, respectively under laboratory conditions. The fungus and insecticide were tested alone and in combinations at LC30. Significant and synergistic interactions between B. bassiana and imidacloprid were observed with increased mortality rates of the combined treatment as compared to individual treatment in housefly strains 772a (susceptible) and 766b (resistant). Significant differences in the GST and P450 activities for both strains were found. Female 766b flies caused 15- to 237-fold increases in gene expression of xenobiotic response genes for B. bassiana and 23- to 120-fold changes for imidacloprid. The combination of B. bassiana and imidacloprid caused significant synergistic interaction when applied against two housefly strains irrespective of order of application. The effect was highest when the insecticide was applied first. The resistant housefly strain had elevated detoxification enzymes and higher expression of detoxification genes, but showed the same level of susceptibility to the combined fungus/insecticide treatment as the susceptible strain.  相似文献   

7.
Insecticides based on crystalline toxins of Bacillus thuringiensis are very good biological plant protection products. However, the spectrum of activity of some toxins is narrow or resistance among insects has been developed. We tested the insecticidal activity of crystals of the B. thuringiensis MPU B9 strain alone and supplemented with Vip3Aa proteins against important pests: Spodoptera exigua Hübner (Lepidoptera: Noctuidae), Cydia pomonella L. (Lepidoptera: Tortricidae) and Dendrolimus pini L. (Lepidoptera: Lasiocampidae). The Cry toxins were more active for D. pini but less active against S. exigua and C. pomonella than Vip3Aa. Supplementation of Cry toxins by small amounts of vegetative insecticidal proteins demonstrated synergistic effect and significantly enhanced the toxicity of the insecticide. The results indicate the utility of Cry and Vip3Aa toxins mixtures to control populations of crops and forests insect pests.  相似文献   

8.
Aflatoxins are toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus and cause toxin contamination in food chain worldwide. Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu. Koji mold species are generally perceived of as being nontoxigenic and are generally recognized as safe (GRAS). Fungal isolates were collected from a California orchard and a few were initially identified to be A. sojae using β-tubulin gene sequences blasted against NCBI data base. These new isolates all produced aflatoxins B1, B2, G1, and G2 and were named as Pistachio Winter Experiment (PWE) strains. Thus, it is very important to further characterize these strains for food safety purposes. The full length of aflR gene of these new isolates was sequenced. Comparison of aflR DNA sequences of PWE, A. parasiticus and A. sojae, showed that the aflatoxigenic PWE strains had the six base insertion (CTCATG) similar to domesticated A. sojae, but a pre-termination codon TGA at nucleotide positions 1153–1155 was absent due to a nucleotide codon change from T to C. Colony morphology and scanning microscopic imaging of spore surfaces showed similarity of PWE strains to both A. parasiticus and A. sojae. Concordance analysis of multi locus DNA sequences indicated that PWE strains were closely linked between A. parasiticus and A. sojae. The finding documented the first report that such unique strains have been found in North America and in the world.  相似文献   

9.
A study was conducted to examine whether Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) can colonize grapevine leaf tissues and subsequently confer protection against downy mildew caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni. Following the foliar inoculation of plants with conidial suspensions of selected B. bassiana strains, colonization of leaves by the fungus was determined using culture-based and PCR techniques at different time intervals. Seven days following B. bassiana inoculation, grapevine plants were challenged with P. viticola and symptoms were assessed by calculating the disease incidence and severity. Although all tested strains were able to colonize grapevine plants, percent colonization differed significantly among strains. Disease incidence and severity were, on the other hand, significantly reduced in B. bassiana-inoculated plants compared to control plants irrespective of strain. This study is one of very few studies investigating the promising role B. bassiana could play as a plant disease antagonist.  相似文献   

10.
Calmodulin (CaM) is a primary Ca2+ receptor and plays a pivotal role in a variety of cellular responses in eukaryotes. Even though a large number of CaM-binding proteins are well known in yeast, plants, and animals, little is known regarding CaM-targeted proteins in filamentous fungi. To identify CaM-binding proteins in filamentous fungi, we used a proteomics method coupled with co-immunoprecipitation (CoIP) and MALDI-TOF/TOF mass spectrometry (MS) in Beauveria bassiana. Through this method, we identified ten CaM-binding proteins in B. bassiana. One of the CaM-targeted proteins was the heat shock protein 70 (BbHSP70) in B. bassiana. Our biochemical study showed that ATP inhibits the molecular interaction between BbHSP70 and CaM, suggesting a regulatory mechanism between CaM and ATP for regulating BbHSP70.  相似文献   

11.
The fungal lectin purified from Sclerotinia sclerotiorum, further referred to as Sclerotinia sclerotiorum agglutinin or SSA, possesses insecticidal activity against important pest insects such as pea aphids (Acyrthosiphon pisum). This paper aims at a better understanding of its activity at cellular level. Therefore, different insect cell lines were treated with SSA. These cell lines were derived from different tissues and represent the three major orders of insects important in agriculture: CF-203 (midgut Choristoneura fumiferana, Lepidoptera), GUTAW1 (midgut, Helicoverpa zea, Lepidoptera), High5 cells (ovary, Trichoplusia ni, Lepidoptera), Sf9 (ovary cells from Spodoptera frugiperda, Lepidoptera), S2 (hemocyte, Drosophila melanogaster, Diptera), and TcA (whole body, Tribolium castaneum, Coleoptera). Although the sensitivity to SSA differs between the cell lines, SSA clearly showed toxicity in all six cell lines with median effect concentrations (EC50) ranging between 9 and 42 μg/ml. An in-depth analysis of the mechanism of uptake in the cells revealed superior amounts of FITC-SSA at the membrane of CF-203 cells compared to Sf9 cells, while a similar small amount of SSA was internalized in both cell lines. Pre-incubation with the clathrin-mediated endocytosis inhibitor phenylarsine oxide inhibited the internalization of SSA into the CF-203 and Sf9 cells with a respective reduction of 6- and 1.7-fold. The data are discussed in relation to the importance of cellular uptake mechanism for SSA binding and cytotoxicity.  相似文献   

12.
Habrobracon hebetor Say (Hymenoptera: Braconidae) is a cosmopolitan gregarious ectoparasitoid that attacks larvae of several species of Lepidoptera. Although there are two genetically different strains within H. hebetor, distribution of the strains has been poorly understood. In 2010, in Thailand, where H. hebetor has been known as a parasitoid of stored grain pests, it was found that H. hebetor attacked Opisina arenosella Walker (Lepidoptera: Oecophoridae), which is an invasive pest of coconut palm. For correct identification of this H. hebetor, we conducted DNA analysis and cross tests using populations collected from O. arenosella and stored grain pests in Thailand and populations in Japan known as H. hebetor. We obtained 413 bp of mitochondrial cytochrome oxidase I (COI) sequences and 414 bp of 16S rRNA gene sequences, and both indicated that there are two distinct clades within H. hebetor: one contains insects from Thailand, Spain, India, and Barbados; the other contains insects from Japan and the USA. There were no genetic differences or sexual isolation between Thai populations from different hosts. Our results also showed that populations in Thailand were sexually isolated from a H. hebetor population in Japan.  相似文献   

13.
Penicillium and Talaromyces species have a worldwide distribution and are isolated from various materials and hosts, including insects and their substrates. The aim of this study was to characterize the Penicillium and Talaromyces species obtained during a survey of honey, pollen and the inside of nests of Melipona scutellaris. A total of 100 isolates were obtained during the survey and 82% of those strains belonged to Penicillium and 18% to Talaromyces. Identification of these isolates was performed based on phenotypic characters and β-tubulin and ITS sequencing. Twenty-one species were identified in Penicillium and six in Talaromyces, including seven new species. These new species were studied in detail using a polyphasic approach combining phenotypic, molecular and extrolite data. The four new Penicillium species belong to sections Sclerotiora (Penicillium fernandesiae sp. nov., Penicillium mellis sp. nov., Penicillium meliponae sp. nov.) and Gracilenta (Penicillium apimei sp. nov.) and the three new Talaromyces species to sections Helici (Talaromyces pigmentosus sp. nov.), Talaromyces (Talaromyces mycothecae sp. nov.) and Trachyspermi (Talaromyces brasiliensis sp. nov.). The invalidly described species Penicillium echinulonalgiovense sp. nov. was also isolated during the survey and this species is validated here.  相似文献   

14.
Despite feather fungi being an important component of the Arctic fungal flora, their ecological role and diversity are not fully known. In the current study, fungal cultures were isolated from feathers (barnacle goose, common eider, and glaucous gull) collected in the Ny-Ålesund region, Svalbard. Isolates were identified by ITS region sequences, which include the ITS1, ITS2, and 5.8S rRNA. The result showed culturable yeast and filamentous fungi belonging to three classes: Ascomycota (Pyrenochaetopsis pratorum, Cladosporium herbarum, Thelebolus microsporus, Aspergillus versicolor, Penicillium commune, and Venturia sp.), Basidiomycota (Mrakia blollopis and Rhodotorula mucilaginosa), and Zygomycota (Mucor flavus). Most of the fungal isolates appeared to be cold-tolerant, and about 60 % of the isolates showed keratinase activity. The reasonably low fungal diversity colonizing feathers indicates that the birds of Svalbard are casual carriers of fungi which may result in a negligible impact on their health. To the best of our knowledge, this is the first record of fungal communities present on the feathers of birds in the high Arctic.  相似文献   

15.
A total of 15 endophytic Bacillus thuringiensis isolates were obtained from root nodules of six legumes (soybean, ricebean, gahat, frenchbean, lentil and pea). All of these isolates were characterized by the presence of one of two different types of crystalline inclusions (spherical and bipyramidal) and tolerance to a wide pH range (4–10; optimum 7.0) and NaCl concentrations up to 8%. Genetic diversity among the B. thuringiensis isolates was determined by repetitive extragenic palindromic PCR assays (rep-PCR) using the Bacillus cereus-repetitive extragenic palindromic, BOX, enterobacterial repetitive intergenic consensus sequence and (GTG)5 primers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis proteogram of the B. thuringiensis isolates revealed the presence of two major polypeptides (24.4 and 131.0 kDa). Maximum crystal protein profile was observed in the B. thuringiensis isolates producing the spherical crystal, while those isolates producing the bipyramidal crystal protein showed four four major polypeptides (24.4, 33.8, 81.2 and 131.0 kDa). The purified crystal protein profile of the B. thuringiensis isolates revealed the presence of only one major protein of 130 kDa mass. Isolates VRB1 and VLG15 possessing the cry1 and cry2 family genes demonstrated 100% mortality against first-instar larvae of the Bihar hairy caterpillar (lepidopteran pest). Our study of the ecological and molecular diversity among newly identified B. thuringiensis isolates suggests that these could be useful in planning new strategies for integrated pest management in sustainable agricultural systems.  相似文献   

16.
In the current investigation, the biological activities of essential oils obtained from organs of Ruta chalepensis plants grown under salt stress (0, 50 and 100 mM NaCl) were analyzed. Their chemical composition was often investigated by GC/FID and GC–MS and the antimicrobial activities towards eight bacteria (Salmonella All, Salmonella K, Escherichia coli 45AG, Escherichia coli 45AI, Staphylococcus aureus 9402, Staphylococcus aureus 02B145, Listeria 477 and Pseudomonas aeruginosa ATCC 10145) and five fungi strains (Aspergillus, Saccharomycee crvisiale, Streptomyces griseus, Fusarium solani and Penicillium thomii) were studied. Results revealed that salt increased essential oil production in leaves at 50 and 100 mM NaCl. A total of 20 compounds were identified in leaves, undecan-2-one, nonan-2-one and geijerene being the dominant ones. In stems, 21 compounds were found; they were dominated by decan-2-one, geijerene, nonan-2-one and undecan-2-one. In contrast, roots exhibited a large variation with 25 volatile compounds and octyl acetate, methyl decanoate, phytyl acetate were the major ones. Salt stress induced significant antibacterial activity changes, mainly in leaves and stems. In leaves, the minimum inhibitory and bactericidal concentration decreased at 100 mM NaCl against Listeria 477, the two strains of E. coli (45AG and 45AI) and P. aeruginosa but it increased versus other bacteria. In stems, salt increased oil antibacterial activity against all strains except P. aeruginosa ATCC 10145. Root oil showed the least antibacterial activity under saline conditions versus Listeria 477 and P. aeruginosa ATCC 10145. As regards antifungal activity, NaCl reduced the antifungal activity of essential oils against the majority of fungi strains.  相似文献   

17.
The western flower thrip, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is recognized as a serious pest worldwide, but overuse of chemical pesticides results in environmental pollution and insect resistance. Herein we report the biocontrol of soil-dwelling stages of western flower thrips using entomopathogenic Beauveria bassiana granules. Using a B. bassiana isolate expressing enhanced green fluorescent protein (Bb-egfp), we confirmed that Bb-egfp was highly virulent to the thrips and colonized the soil, which allowed soil-dwelling pupae to come in contact with the colonized fungal mass. In a glasshouse trial, granules of BbERL836 and BbERL1578 isolates were applied to the soil surface of tomatoes growing in pots and female F. occidentalis were released on tomato plants three days after the fungal application. Populations reductions between 75 and 90% were observed in the treatments of BbERL836 and BbERL1578 at 20 and 40 days after application (chemical control: 85% reduction). In the field trial with cucumbers, the two ERL soil treatments showed ca. 90% control efficacy, similar to that of spinetorm, a semi-synthetic insecticide (85% efficacy). This study shows that using entomopathogenic B. bassiana granules to kill soil-dwelling stages of thrips is an effective strategy to manage F. occidentalis populations in tomato and cucumber.  相似文献   

18.
The influence of five different crops (beans, cucumber, eggplant, maize, and tomato) on persistence and the control efficacy of Beauveria bassiana (Balsamo) Vuillemin to Tetranychus urticae Koch was investigated. Plants were artificially infested with T. urticae. B. bassiana conidia were suspended in Break-thru® solution (0.01%) at three different concentrations (0.5, 1, 2 g l?1) and sprayed once onto plants. Plants in the control treatment were sprayed with Break-thru® solution alone. The number of conidia and levels of mite mortality were evaluated. Colony forming unit counts of conidia recovered from plant leaves declined over time regardless of the concentrations of B. bassiana applied. The rate of decline was different among crops and significantly higher on maize. However, more than 50% of the initial population of conidia were still viable on crops three weeks after application. The longer persistence of B. bassiana on crops did not result in better control of mites. Rather, mortality was positively correlated to the amount of inoculum deposited on leaves immediately after spraying. Mortality of mites was concentration-dependent and influenced by the host crop, with less control observed on maize and tomato than eggplant, beans and cucumber. Results were consistent between trials conducted and confirmed the hypothesis that the type of crop can influence the efficacy of B. bassiana against T. urticae.  相似文献   

19.
Lectins are carbohydrate-binding proteins with wide array of functions including plant defense against pathogens and insect pests. In the present study, a putative mannose-binding lectin (WsMBP1) of 1124 bp was isolated from leaves of Withania somnifera. The gene was expressed in E. coli, and the recombinant WsMBP1 with a predicted molecular weight of 31 kDa was tested for its insecticidal properties against Hyblaea puera (Lepidoptera: Hyblaeidae) and Probergrothius sanguinolens (Hemiptera: Pyrrhocoridae). Delay in growth and metamorphosis, decreased larval body mass and increased mortality was recorded in recombinant WsMBP1-fed larvae. Histological studies on the midgut of lectin-treated insects showed disrupted and diffused secretory cells surrounding the gut lumen in larvae of H. puera and P. sanguinolens, implicating its role in disruption of the digestive process and nutrient assimilation in the studied insect pests. The present study indicates that WsMBP1 can act as a potential gene resource in future transformation programs for incorporating insect pest tolerance in susceptible plant genotypes.  相似文献   

20.
As a result of search for species and strains of entomopathogenic fungi and bacteria virulent to migratory locust (Locusta migratoria migratoria L.), combinations were found which cause high mortality of insect in a short time interval. Four or five days after the L. migratoria had been infected with Beauveria bassiana (Bals.) Vuill and Metarhizium anisopliae (Metsch.) Sorokin a sharp increase in nymphas’ mortality was observed, reaching 95–100% on the 13th to 17th day after inoculation. The mortality of L. migratoria after infection with Pseudomonas sp. bacteria was approximately 30–50% on the 3rd to 7th day of the experiment. Later deaths of the locusts were not observed. When we made synchronous inoculation with fungi and bacteria, the rate of nymphas’ mortality was higher in comparison with monoinfections, and LT50 was about three days. Microbiological analysis of the dead insects showed that both pathogens could coexist in the locust. To determine the antagonism between Pseudomonas and fungi on a synthetic nutrient medium, the blocking method was used. We showed that the fungi do not affect the development of the bacterium, and the Pseudomonas has an insignificant effect on the fungi growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号