首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Species identification is a basic issue in biosecurity. Polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) is a useful molecular diagnostic tool for species identification. However, the lack of transferability of data has been a serious shortcoming of this method. A RFLP catalog, i.e., a graph of PCR-RFLP patterns expected from sequence data, was devised as a tool to facilitate PCR-RFLP data sharing among laboratories. Twelve species of Tetranychus spider mites have been recorded in Japan to date. In this study, we analyzed DNA sequences of the internal transcribed spacer (ITS) region in nuclear ribosomal DNA of 11 Tetranychus species. For the species identification using PCR-RFLP, we chose six candidates from 131 restriction endonucleases and developed an RFLP catalog of all known Japanese Tetranychus species except Tetranychus neocaledonicus André. The RFLP catalog revealed that most Tetranychus species had diagnostic restriction fragments. The RFLP catalog is transferable and simple molecular diagnostic tool, and it has the ability to add more species and newly found intraspecific variations. Therefore, we believe that the RFLP catalog will contribute to biosecurity as a practical diagnostic tool for species identification of spider mites.  相似文献   

2.
Causes of spider mite (Acari: Tetranychidae) population resurgences consequent upon exposure to synthetic pyrethroid (SP) treatments are reviewed. Resurgences may be seen as soon as 1 week, or even as late as a whole season, post-treatment. Synthetic pyrethroids vary in their adverse effects on spider mites, and also differ in their ability to invoke resurgences of different spidermite species on diverse plants. These pesticides are lethal as well as repellent to phytoseiids and other predators that prey on spider mites, may inhibit fungi which attack the latter, and affect phytophagous competitors. Spider mites are likewise repelled by SPs, thus becoming more evenlydistributed and less web-restricted, with a resultant increase in fecundity. Spider-mite development is shortened due to SPs and the sex ratio becomes more female-biased; onset of winter diapause also seems to be delayed. Synthetic pyrethroids appear to sensitize to spider-mite infestation plants which have not hitherto been attacked. Some SP effects (whether on spider mites, natural enemies or competitors) appear to be direct, whereas others may be mediated through the host plants. The effect of SPs on the other Acari is variable within the Prostigmata and Astigmata. Most Mesostigmata and Metastigmata (ticks) are very sensitive, whilst the Cryptostigmata (Oribatei) appear to be insensitive. Synthetic pyrethroids-induced resurgences of Homoptera are comparatively reviewed, with the conclusion that some of the phenomena may be similar to those observed in spider mites. Various resurgence models are discussed, as well as the three main causes of variation (SPs, spider-mite species, host plants) in the observed phenomena. The need for more rigorous and carefully controlled experimentation is emphasized.  相似文献   

3.
Preadult rearing conditions affected the behavior of dicofol-resistant two-spotted spider mites (Tetranychus urticae). Resistant spider mites reared on dicofol-treated leaves initiated a significantly greater number of feeding bouts on dicofol-treated leaves than did genetically identical spider mites reared on residue-free leaves. Therefore the prior exposure of resistant spider mites resulted in induced feeding preferences that could exacerbate the potential outcome of the resistance by resulting in greater amounts of feeding by resistant individuals on dicofol-treated areas. Since resistant individuals that had not experienced dicofol in their lifetime did not display this feeding preference, avoidance of this phenomenon of induced feeding preference may be an undescribed value of rotations of pesticides.  相似文献   

4.
Functional responses of deutonymphs of the predatory mite,Allothrombium pulvinum Ewing, on eggs and adult females of two-spotted spider mite,Tetranychus urticae Koch, were determined in the laboratory. Predation experiments were conducted on lima bean leaf discs over a 24-h period at 25±2°C, 30–50% RH and 24L: 0D photoperiod. Prey densities ranged from 10 to 120T. urticae eggs per disc or 2 to 32 adult females per disc.Allothrombium pulvinum deutonymphs were more effective againstT. urticae eggs than its adult females. The role ofA. pulvinum deutonymphs in integrated and biological pest control is discussed.  相似文献   

5.
6.
7.
The use of DNA barcodes, short DNA sequences from a standardized region of the genome, has recently been proposed as a tool to facilitate species identification and discovery. Here we show that second internal transcribed spacer of nuclear ribosomal DNA (rDNA-ITS2) barcodes effectively discriminate among 16 species of spider mites (Acari: Tetranychidae) from Israel. The barcode sequences of each species were unambiguously distinguishable from all other species and formed distinct, nonoverlapping monophyletic groups in the maximum-parsimony tree. Sequence divergences were generally much greater between species than within them. Using a 0.02 (2%) threshold for species diagnosis in our data set, 14 out of 16 species recognized by morphological criteria would be accurately identified. The only exceptions involved the low divergence, 0.011–0.015 (1.1–1.5%), between Tetranychus urticae and Tetranychus turkestani, where speciation may have occurred only recently. Still, these species had fixed alternative rDNA-ITS2 variants, with five diagnostic nucleotide substitutions. As a result, we tentatively conclude that rDNA-ITS2 sequence barcodes may serve as an effective tool for the identification of spider mite species and can be applicable as a diagnostic tool for quarantine and other pest management activities and decision-making. We predict that our work, together with similar efforts, will provide in the future the platform for a uniform, accurate, practical and easy-to-use method of spider mite species identification.  相似文献   

8.
DNA sequence data were used to examine phylogenetic relationships between six species of economically important Tetranychidae mites:Eotetranychus carpini (Oudemans),E. pruni (Reck),Tetranychus pacificus McGregor,T. mcdanieli McGregor,T. turkestani Ugarov & Nikolski andT. urticae Koch. With primers directed toward conserved elements flanking the target region, the Polymerase Chain Reaction was used to amplify the ITS2 spacer of the ribosomal DNA molecule. The nucleotide sequence of a 300-bp fragment of the ITS2 was determined by direct sequencing and nucleotide divergence used for intra-generic comparison in mites. The resulting phylogenetic tree expressing interspecific relationships in genusTetranychus agrees with morphological data. The study demonstrates the usefulness of the approach in the assessment of the systematics and evolution of the group.  相似文献   

9.
As sexual selection is a coevolutionary process between males and females, various morphological and behavioral traits have evolved in each sex. In the tetranychid mites Tetranychus urticae Koch and T. kanzawai Kishida (Acari: Tetranychidae), males can mate repeatedly, whereas females normally accept only the first copulation for fertilization. Since early times, it had been reported that males engage in precopulatory mate guarding and combat against conspecifics for females to enhance their reproductive success. On the other hand, it was believed that females do not have opportunities to choose their mates. In the last 10 or so years, however, several new findings related to mating behavior were reported. Some of the findings reinforce our established knowledge, whereas some of them explode it. Here, I review the mating behavior of T. urticae and T. kanzawai by incorporating recent findings and then propose a new direction for future research.  相似文献   

10.
In many agricultural systems spider mites are believed to be induced pests, only reaching damaging densities after pesticides decimate predator populations. Wine grapes typically receive two types of pesticides, insecticides and fungicides. Chemicals in either class could impact spider mite densities both directly through spider mite mortality, and indirectly by negatively affecting natural enemies. The impact of a broad-spectrum insecticide (chlorpyrifos) and an inorganic fungicide (sulfur) on mites and their natural enemies was monitored in replicate open-field experiments conducted in an abandoned vineyard in Washington State. In both experiments, chemicals were applied within a 2 × 2 factorial design, allowing assessment of both main and interactive effects of the two chemicals. Following typical management practices on wine grapes in Washington State, we made a single insecticide application early in the season, but repeatedly applied sulfur throughout the season. In the absence of sulfur, chlorpyrifos application led to higher spider mite densities. The main effect of chlorpyrifos appeared to be indirect, perhaps mediated through mortality of generalist phytoseiid mites; generalists appeared to be unable to recover following even a single insecticide application, while there was no evidence for harmful effects of chlorpyrifos on specialist phytoseiid mites. Sulfur had direct suppressive effects on both pest and predatory mites, although in the second experiment the suppressive effect of sulfur on spider mites was weaker when chlorpyrifos was also applied. These field experiments suggest that a complex mix of direct and indirect effects of the two chemicals impacted spider mite population dynamics in our system.  相似文献   

11.

The family Tetranychidae includes many agriculturally important species known as spider mites. Their morphological identification is quite difficult due to the tiny size of their taxonomic characters and the requirement for high-level expertise. This may lead to pest misidentification and thus failure in pest management. DNA-based species identification seems to offer an alternative solution to overcome these issues. In the present study, two common molecular markers—Cytochrome oxidase subunit I (COI) and Internal transcribed spacer 2 (ITS2)—were used to identify 10 spider mite species from Turkey. Furthermore, genetic distances for several of them were assessed. Panonychus ulmi and Bryobia kissophila had the lowest (1.1%) and highest (4.5%) intra-specific genetic distances, respectively. In addition, integrative taxonomy allowed to identify Eotetranychus quercicola in Turkey as a new record. The sequences herein obtained will allow rapid species identification using molecular techniques and will contribute to resolve the phylogenetic history of spider mites.

  相似文献   

12.
We investigated the effects of changes in vapor pressure deficit (VPD) on the survival of diapausing (winter form) and non-diapausing (summer form) spider mites Tetranychus urticae Koch and Tetranychus kanzawai Kishida (Acari: Tetranychidae). Adult females of both species were kept without food at VPDs of 0.0, 0.4, 0.7, 1.5, 1.9, or 2.7 kPa for 3, 6, 9, 12, or 15 days at 25 °C. Diapausing females of both species kept at a VPD of ≥0.4 kPa for ≥6 days clearly tolerated desiccation. Under water-saturated conditions (VPD = 0.0 kPa), in which no desiccation occurred, diapausing females showed high starvation tolerance: 90 % survived for up to 15 days. No interspecific differences in tolerance to desiccation or starvation were observed under most conditions. These results indicate that diapause functions increase tolerance to desiccation and starvation. Such multiple tolerances to harsh environments might support winter survival in spider mites.  相似文献   

13.
Leaf samples were taken from 34 (1998) and 10 (1999) vineyards in five valleys in western Oregon to assess spider mite pests and biological control by predaceous phytoseiid mites. A leaf at a coordinate of every 10 m of border, 5 m into a vineyard, was taken to minimize edge effects; 20 leaves were taken at regular intervals from vineyard centers. Variables recorded at each site included grape variety and plant age, chemicals used, and vegetation next to vineyards. Sites were rated as occurring in agricultural versus riparian settings based on surrounding vegetation types. Multiple linear regressions and a computer genetic algorithm with an information content criterion were used to assess variables that may explain mite abundances. Typhlodromus pyri Scheuten was the dominant phytoseiid mite species and Tetranychus urticae Koch the dominant tetranychid mite species. High levels of T. urticae occurred when phytoseiid levels were low, and low levels of T. urticae were present when phytoseiid levels were high to moderate. T. urticae densities were higher in vineyards surrounded by agriculture, but phytoseiid levels did not differ between agricultural and riparian sites. Phytoseiids had higher densities on vineyard edges; T. urticae densities were higher in centers. Biological control success of pest mites was rated excellent in 11 of 44 vineyards, good in 27, and poor in only six sites. Predaceous mites appeared to be the principal agents regulating spider mites at low levels in sites where pesticides nontoxic to predators were used. Effects of surrounding vegetation, grape variety, growing region, and other factors on mites are discussed.  相似文献   

14.
Field surveys were conducted from 2004 to 2007 to determine the species composition and relative abundance of natural enemies associated with colonies of either the citrus red mite, Panonychus citri, or the two spotted spider mite, Tetranychus urticae, in Valencian citrus orchards (eastern Spain). Fourteen species were recorded, six phytoseiid mites and eight insect predators. Two of them are reported for the first time on citrus in Spain and two more are first reports as predators associated with T. urticae. The community of predators associated with T. urticae and P. citri was almost identical, and the Morisita–Horn index of similarity between both natural enemy complexes was close to one, suggesting that predators forage on both pest species. Quantifying the presence of many known spider mites predators in Valencian citrus orchards is an important first step towards spider mite control. A challenge for future studies will be to establish conservation and/or augmentation management strategies for these predators, especially to improve T. urticae biological control.  相似文献   

15.
The use of chlorophyll fluorescence as a method for detecting and monitoring plant stress arising from Tetranychus urticae (Koch) feeding injury was investigated. The effect of mite density (1–32 mites per 1.5 cm2 of leaf) and the duration of the feeding period (1–5 days) on the chlorophyll fluorescence parameters of bean (Phaseolus vulgaris) leaves were examined. Changes in chlorophyll fluorescence parameters were dependent both on mite density and duration of feeding. Decreases in F o, the initial fluorescence and F m, the maximum fluorescence led to a decrease in the ratio of variable to maximum fluorescence, F v/F m. The decrease in F v/F m is typical of the response of many plants to a wide range of environmental stresses and indicates a reduced efficiency of photosystem II (PSII) photochemistry. T 1/2, which is proportional to the pool size of electron acceptors on the reducing side of PSII, was also reduced in response to mite-feeding injury. The leaf chlorophyll content decreased with increasing mite density and duration of feeding but did not appear to contribute to the decrease in F v/F m. Chlorophyll fluorescence is an effective method for detecting and monitoring stress in T. urticae-injured bean leaves.  相似文献   

16.
Two-spotted spider mites (Tetranychus urticae Koch) placed upon leaves treated with checkerboard-like discontinuous residues of 100 ppm dicofol were observed at time 0,3 h, 6 h and 24 h after application (h0,h3,h6 andh24, respectively). In one experiment, the mites were allowed to reside undisturbed upon a single leaf for the duration of the observations. In a second experiment, mites of one group were transferred to another webbing-free leaf with discontinuous dicofol residue for each observation period, while those of a control group were lifted off the leaf surface and returned to it (on the same leaf) prior to each observation period. The mites in all three groups eventually began to avoid the dicofol-treated squares during their nonlocomotory activities, in no instance was dicofolavoidance displayed by moving mites. Mites that lomained undisturbed upon leaves treated with discontinuous residue began to avoid the dicofol-treated squares byh3. The mites lifted above their leaf and replaced on it prior to each observation period did not begin to avoid the dicofol-treated squares untilh6. The mites transferred to a webbing-free leaf prior to each observation period did not begin to avoid the dicofol-treated squares untilh24. Attributes of tetranychid webbing, that may cause the last-mentioned group of mites to expend considerable energy in searching for a webbed area of leaf surface, are discussed.  相似文献   

17.
A closed double-leaf-disk (DLD) assay is presented which prevents escape (runoff) of spider mites and exposes them to treated leaf tissue during the entire test period. The physiological (direct) toxicity of acaricide residue can be estimated with this assay without the interference of behavioral factors. In contrast, runoff is often a major component of the total mortality in open single-leaf-disk (SLD) assays, in addition to direct mortality. Fenpropathrin, a highly repellent pyrethroid acaricide, caused primarily runoff and little direct mortality in SLD assays withPanonychus ulmi (Koch). When runoff and direct mortality were combined, concentration-response lines andlc 50 values were identical to those obtained with the closed DLD assay. Assays with the organotin fenbutatin oxide gave similar results, suggesting that the runoff response should be included when estimating the residual toxicity of these compounds with the standard SLD assay. In fact, excluding runoff mortality from the analysis may underestimate the toxicity of foliar residue. Providing residue-free non-leaf surface inside the DLD cage caused a shift to the right of the concentration-response line, resulting in higherlc 50s. The DLD assay can be employed for mite species which are difficult to confine, and in toxicological studies of repellent or irritating acaricides. This assay may be particularly useful for elucidating the relationship between physiological toxicity and mite behavior in response to acaricide residue.Technical Paper 9167 of the Oregon State University Agricultural Experiment State, Corvallis, Oregon, USA.  相似文献   

18.
The chromosomes of 13 species of spider mites (Tetranychidae) are determined using the aceto-orcein squash technique in order to establish the haplo-diploid sex-determination. 12 species showed the existence of haploid and diploid eggs:Neotetranychus rubi (Trägårdh) with 7 and 14 chromosomes;Eurytetranychus buxi (Garman) with 5 and 10;Bryobia sarothamni (Geijskes),Eotetranychus tiliarium (Joh. Hermann) andE. carpini (Oudemans) with 4 and 8;Panonychus ulmi (Koch),Schizotetranychus schizopus (Zacher),Oligonychus ununguis (Jacobi).Tetranychus hydrangeae Pritch. & Baker, T.pacificus McGregor,T. urticae Koch andT. cinnabarinus (Boisduval) with 3 and 6 chromosomes.The progeny of virgin females in 7 different species consisted of eggs with the haploid complement. One species was shown to be thelytokous, viz.Tetranycopsis horridus (Canestrini & Franzago), having a diploid number of 4 chromosomes. Some eggs of an inbred line ofT. urticae showed a patchwork quilt of odd polyploidy in embryonic tissue.  相似文献   

19.
The genetic variation in phosphoglucoisomerase (PGI) and malate dehydrogenase (MDH) was studied in red-pigmented Japanese spider mites of the genus Tetranychus by means of poly-acrylamide gel electrophoresis. The analysis revealed (1) that Tetranychus kanzawai possesses five and three alleles for PGI and MDH, respectively and that PGI allele frequencies clearly differ between the Hokkaido and the Honshu populations (2) that Tetranychus urticae and Tetranychus pueraricola, two closely related species, have different alleles for PGI and (3) that two populations of Tetranychus piercei, a species which had only been found on the islands of Okinawa, were obtained from Honshu and that the PGI locus is fixed for different alleles in the two populations. The two enzyme systems are apparently useful not only for discrimination of spider mite species but also for the detection of intraspecific variation. © Rapid Science Ltd. 1998  相似文献   

20.
The twospotted spider mite, Tetranychus urticae Koch, is an important pest of impatiens, a floricultural crop of increasing economic importance in the United States. The large amount of foliage on individual impatiens plants, the small size of mites, and their ability to quickly build high populations make a reliable sampling method essential when developing a pest management program. In our study, we were particularly interested in using spider mite counts as a basis for releasing biological control agents. The within-plant distribution of mites was established in greenhouse experiments and these data were used to identify the sampling unit. Leaves were divided into three zones according to location on the plant: inner, intermediate, and other. On average, 40, 33, and 27% of the leaves belonged to the inner, intermediate, and other leaf zones, respectively. However, because 60% of the mites consistently were found on the intermediate leaves, intermediate leaves were chosen as the sampling unit. These results lead to the development of a presence-absence sampling method for T. urticae by using Taylor coefficients generic for this pest. The accuracy of this method was verified against an independent data set. By determining numerical or binomial sample sizes for consistently estimating twospotted spider mite populations, growers will now be able to determine the number of predatory mites that should be released to control twospotted spider mites on impatiens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号