首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA‐binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA‐independent manner, thereby repressing translation.  相似文献   

2.
3.
4.
5.
Refolding of proteins at high concentrations often results in non‐productive aggregation. This study, through a unique combination of spectroscopic and chromatographic analyzes, provides biomolecular evidence to demonstrate the ability of Eudragit S‐100, a pH‐responsive polymer, to enhance refolding of denatured‐reduced lysozyme at high concentrations. The addition of Eudragit in the refolding buffer significantly increases lysozyme refolding yield to 75%, when dilution refolding was conducted at 1 mg/mL lysozyme. This study shows evidence of an electrostatic interaction between oppositely charged lysozyme and the Eudragit polymer during refolding. This ionic complexing of Eudragit and lysozyme appears to shield exposed hydrophobic residues of the lysozyme refolding intermediates, thus minimizing hydrophobic‐driven aggregation of the molecules. Importantly, results from this study show that the Eudragit‐lysozyme bioconjugation does not compromise refolded protein structure, and that the polymer can be readily dissociated from the protein by ion exchange chromatography. The strategy was also applied to refolding of TGF‐β1 and KGF‐2. © 2009 American Institute of Chemical Engineers Biotechnol. Prog. 2009  相似文献   

6.
Ganes C Sen 《The EMBO journal》2008,27(24):3311-3321
Type I interferon (IFN) inhibits, by an unknown mechanism, the replication of human papillomaviruses (HPV), which are major human pathogens, Here, we present evidence that P56 (a protein), the expression of which is strongly induced by IFN, double‐stranded RNA and viruses, mediates the anti‐HPV effect of IFN. Ectopic expression of P56 inhibited HPV DNA replication and its ablation in IFN‐treated cells alleviated the inhibitory effect of IFN on HPV DNA replication. Protein–protein interaction and mutational analyses established that the antiviral effect of P56 was mediated by its direct interaction with the DNA replication origin‐binding protein E1 of several strains of HPV, through the tetratricopeptide repeat 2 in the N‐terminal region of P56 and the C‐terminal region of E1. In vivo, the interaction with P56, a cytoplasmic protein, caused translocation of E1 from the nucleus to the cytoplasm. In vitro, recombinant P56, or a small fragment derived from it, inhibited the DNA helicase activity of E1 and E1‐mediated HPV DNA replication. These observations delineate the molecular mechanism of IFN's antiviral action against HPV.  相似文献   

7.
The 220 kDa β-subunit of erythroid cell spectrin is a potent inhibitor of protein synthesis in lysates from rabbit reticulocytes. On the basis of weight of protein added to a lysate reaction mixture, it has about half the inhibitory activity of highly purified heme-regulated eIF-2 kinase. Inhibition appears to be at the level of peptide initiation but does not involve a kinase that phosphorylates eIF-2 on its -subunit.  相似文献   

8.
Interleukin 17 (IL‐17) is an important inducer of tissue inflammation and is involved in numerous autoimmune diseases. However, how its signal transduction is regulated is not well understood. Here, we report that nuclear Dbf2‐related kinase 1 (NDR1) functions as a positive regulator of IL‐17 signal transduction and IL‐17‐induced inflammation. NDR1 deficiency or knockdown inhibits the IL‐17‐induced phosphorylation of p38, ERK1/2, and p65 and the expression of chemokines and cytokines, whereas the overexpression of NDR1 promotes IL‐17‐induced signaling independent of its kinase activity. Mechanistically, NDR1 interacts with TRAF3 and prevents its binding to IL‐17R, which promotes the formation of an IL‐17R‐Act1‐TRAF6 complex and downstream signaling. Consistent with this, IL‐17‐induced inflammation is significantly reduced in NDR1‐deficient mice, and NDR1 deficiency significantly protects mice from MOG‐induced experimental autoimmune encephalomyelitis (EAE) and 2,4,6‐trinitrobenzenesulfonic acid (TNBS)‐induced colitis likely by its inhibition of IL‐17‐mediated signaling pathway. NDR1 expression is increased in the colons of ulcerative colitis (UC) patients. Taken together, these findings suggest that NDR1 is involved in the development of autoimmune diseases.  相似文献   

9.
Cell division cycle 2 (Cdc2) protein is an essential subunit of M‐phase kinase (MPK), which has a key role in G2/M transition. Even though the control of MPK activity has been well established with regard to the phosphorylation of Cdc2 at Thr 14 and/or Tyr 15 and Thr 161, little is known about the proteolytic control of Cdc2. In this study, we observed that Cdc2 was downregulated under genotoxic stresses and that double‐stranded RNA‐activated protein kinase (PKR) was involved in the process. The PKR‐mediated Tyr4 phosphorylation triggered Cdc2 ubiquitination. Phospho‐mimic mutations at the Tyr 4 residue (Y4D or Y4E) caused significant ubiquitination of Cdc2 even in the absence of PKR. Our findings demonstrate that (i) PKR, Ser/Thr kinase, phosphorylates its new substrate Cdc2 at the Tyr 4 residue, (ii) PKR‐mediated Tyr 4‐phosphorylation facilitates Cdc2 ubiquitination and proteosomal degradation, (iii) unphosphorylated Tyr 4 prevents Cdc2 ubiquitination, and (iv) downstream from p53, PKR has a crucial role in G2 arrest and triggers Cdc2 downregulation under genotoxic conditions.  相似文献   

10.
11.
Aggregation of α‐synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age‐dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA‐mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ‐1 but not the PD‐associated mutations PINK1 G309D and parkin Δ1–79 or by DJ‐1 C106A.  相似文献   

12.
13.
Prostaglandin F2α (PGF2α) is a potent adipose differentiation inhibitor for the adipogenic cell line 1246 and for adipocyte precursors in primary culture with an ED50 of 3×10−8 M. In this paper, we examined the effect of several prostaglandins which have structural similarities with PGF2α on the differentiation of 1246 cells and of adipocyte precursors in primary culture. The results show that only 9α,11β-PGF2α is as potent as PGF2α to inhibit differentiation of adipocyte precursors in primary culture and of the adipogenic cell line 1246. In the presence of 9α,11β-PGF2α, the cells remained fibroblast-like, typical of undifferentiated adipocyte precursors. Triglyceride accumulation and increase of specific activity for glycerol-3-phosphate dehydrogenase were inhibited. In addition, mRNA expression of early markers of differentiation such as lipoprotein lipase (LPL) and fatty acid binding protein (FAB) was decreased. The isomer 9β,11α-PGF2α and other PGF2α derivatives were inactive. These results provide new information on the biological activity of 9α,11β-PGF2α as an inhibitor of adipose differentiation and about the structural characteristics of prostaglandins required for maintenance of a high adipose differentiation inhibitory effect.  相似文献   

14.
Mitogen-activated protein (MAP) kinase phosphatase 3 (MKP3) is a cytoplasmic dual specificity phosphatase that functions to attenuate signaling via dephosphorylation and subsequent deactivation of its substrate and allosteric regulator, extracellular signal-regulated protein kinase 2 (ERK2). Expression of MKP3 has been shown to be under the control of ERK2, thus providing an elegant feedback mechanism for regulating the rate and duration of proliferative signals. Previously published studies suggest that MKP3 might serve as a tumor suppressor; however, significantly elevated, rather than reduced, levels of this protein have been reported in early lesions. Because overexpression of this phosphatase is counterintuitive to a proposed tumor suppressor function, the observed cellular tolerance suggested a self-inactivation mechanism. Using surface plasmon resonance, we have provided direct evidence of physical interaction between the N- and C-terminal domains. Kinetic analysis using dimethyl sulfoxide to activate the C-terminal fragment in the absence of ERK2 showed that the isolated C-terminal domain had higher catalytic efficiency than the similarly activated full-length protein. Furthermore, when the isolated N-terminal domain was added to the activated C-terminal domain, a dose-dependant inhibition of catalytic activity was observed. The similarity between the K(I) and K(D) values obtained indicate that interdomain binding stabilizes the inactive conformation of the catalytic site and implies that the N-terminal domain functions as an allosteric inhibitor of phosphatase activity. Finally, we have provided evidence for oligomerization of MKP3 in pancreatic cancer cells expressing elevated levels of this phosphatase.  相似文献   

15.
The obligate intracellular bacterium Coxiella burnetii causes the zoonotic disease Q‐fever. Coxiella pathogenesis depends on a functional type IV secretion system (T4SS). The T4SS effector AnkG inhibits pathogen‐induced host cell apoptosis, which is believed to be important for the establishment of a persistent infection. However, the mode of action of AnkG is not fully understood. We have previously demonstrated that binding of AnkG to p32 is crucial for migration of AnkG into the nucleus and that nuclear localization of AnkG is essential for its anti‐apoptotic activity. Here, we compared the activity of AnkG from the C. burnetii strains Nine Mile and Dugway. Although there is only a single amino acid exchange at residue 11, we observed a difference in anti‐apoptotic activity and nuclear migration. Mutation of amino acid 11 to glutamic acid, threonine or valine results in AnkG mutants that had lost the anti‐apoptotic activity and the ability to migrate into the nucleus. We identified Importin‐α1 to bind to AnkG, but not to the mutants and concluded that binding of AnkG to p32 and Importin‐α1 is essential for migration into the nucleus. Also during Coxiella infection binding of AnkG to p32 and Importin‐α1 is crucial for nuclear localization of AnkG.  相似文献   

16.
17.
18.
19.
20.
Monocyte chemoattractant protein-1 (MCP-1) is a chemotactic cytokine mainly acting on monocytes and T cells that elicits its biological effects by interacting with the seven-transmembrane helix receptor CCR2B. The vaccinia virus strain Lister and many other poxviruses express soluble proteins (vCCI) that bind MCP-1 and other CC chemokines and inhibit their function. In order to define the interaction site of MCP-1 with vCCI from vaccinia, surface exposed residues of MCP-1 were identified and mutated to alanine. The MCP-1 variants were expressed, purified, and their interaction with vCCI was characterized. The site on MCP-1 for vCCI binding is dominated by arginine 18 with important additional contributions from tyrosine 13 and arginine 24. These residues define a binding site that largely overlaps with the CCR2B receptor interaction site. The viral chemokine-binding protein vCCI thus inhibits the biological function of MCP-1 by directly masking its CCR2B receptor-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号