首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Moreover, algae-based biofuels are attractive for their large oil yield potential despite decreased land use and natural resource (e.g., water and nutrients) requirements compared to terrestrial energy crops. Important factors controlling algal lipid productivity include temperature, nutrient availability, salinity, pH, and the light-to-biomass conversion rate. Computational approaches allow for inexpensive predictions of algae growth kinetics for various bioreactor sizes and geometries without the need for multiple, expensive measurement systems. Parametric studies of algal species include serial experiments that use off-line monitoring of growth and lipid levels. Such approaches are time consuming and usually incomplete, and studies on the effect of the interaction between various parameters on algal growth are currently lacking. However, these are the necessary precursors for computational models, which currently lack the data necessary to accurately simulate and predict algae growth. In this work, we conduct a lab-scale parametric study of the marine alga Nannochloropsis salina and apply the findings to our physics-based computational algae growth model. We then compare results from the model with experiments conducted in a greenhouse tank and an outdoor, open-channel raceway pond. Results show that the computational model effectively predicts algae growth in systems across varying scale and identifies the causes for reductions in algal productivities. Applying the model facilitates optimization of pond designs and improvements in strain selection.  相似文献   

2.
Theoretical considerations confirmed by outdoor experiments indicated carbon limitation of biomass production in high-rate oxidation ponds at certain seasonal and operational conditions. Apparently, free carbon dioxide concentration in the pond is the major determinant of carbonlimiting algal photosynthesis. High concentrations of free CO(2) are provided through bacterial respiration which is the main contributor to algal photosynthesis. At high photosynthetic activities and low organic loadings, free CO(2) concentrations are low; its flux into algal cells determines photosynthesis and biomass production rate in the pond.  相似文献   

3.
We investigated how the relative availability of solar radiation in the presence or absence of grazing alters the ability of benthic algae to respond to nutrient enrichment in an Alaskan marsh. We used a factorial mesocosm experiment that included nutrient enrichment (enriched or control), grazing (grazed or ungrazed), and light (unshaded or shaded) to simulate shading by macrophytes early and late in the growing season, respectively. We found stronger effects of grazers and nutrients compared to light on benthic algal biomass and taxonomic composition. Algal biomass increased in nutrient‐enriched treatments and was reduced by grazing. Shading did not have an effect on algal biomass or taxonomic composition, but the concentration of chl a per algal biovolume increased with shading, demonstrating the ability of algae to compensate for changes in light availability. Algal taxonomic composition was more affected by grazer presence than nutrients or light. Grazer‐resistant taxa (basal filaments of Stigeoclonium) were replaced by diatoms (Nitzschia) and filamentous green algae (Ulothrix) when herbivores were removed. The interacting and opposing influences of nutrients and grazing indicate that the algal community is under dual control from the bottom‐up (nutrient limitation) and from the top‐down (consumption by herbivores), although grazers had a stronger influence on algal biomass and taxonomic composition than nutrient enrichment. Our results suggest that low light availability will not inhibit the algal response to elevated nutrient concentrations expected with ongoing climate change, but grazers rapidly consume algae following enrichment, masking the effects of elevated nutrients on algal production.  相似文献   

4.
A macromodel for outdoor algal mass production   总被引:2,自引:0,他引:2  
A model describing growth of an outdoor algal (Spir-ulina platensis)culture was developed. The model can simulate biomass production, pH, growth rate, oxygen evolution, and CO(2) fixation rate. It was calibrated and validated against experimental data obtained by a novel automatic data logger/controller instrumentation which can number most vital parameters of the culture including on line estimation of oxygen production rate (OPR). The importance of understanding light distribution through the pond and its effects on the photosynthesis and respiration processes are emphasized. A maximum yield of about 38g day(-1) m(-2) under optimal conditions is predicted. The present model can also be a useful tool for optimization of algal mass production sites.  相似文献   

5.
Currently, fossil materials form the majority of our energy and chemical source. Many global concerns force us to rethink about our current dependence on the fossil energy. Limiting the use of these energy sources is a key priority for most countries that pledge to reduce greenhouse gas emissions. The application of biomass, as substitute fossil resources for producing biofuels, plastics and chemicals, is a widely accepted strategy for sustainable development. Aquatic plants including algae possess competitive advantages as biomass resources compared to the terrestrial plants in this current global situation. Bio‐oil production from algal biomass is technically and economically viable, cost competitive, requires no capacious lands and minimal water use and reduces atmospheric carbon dioxide. The aim of this paper is to review the potential of converting algal biomass, as an aquatic plant, into high‐quality crude bio‐oil through applicable processes in Malaysia. In particular, bio‐based materials and fuels from algal biomass are considered as one of the reliable alternatives for clean energy. Currently, pyrolysis and hydrothermal liquefaction (HTL) are two foremost processes for bio‐oil production from biomass. HTL can directly convert high‐moisture algal biomass into bio‐oil, whereas pyrolysis requires feedstock drying to reduce the energy consumption during the process. Microwave‐assisted HTL, which can be conducted in aqueous environment, is suitable for aquatic plants and wet biomass such as algae.  相似文献   

6.
The development of P fractions and phytoplankton was studied in three rivers with varying concentrations of seston.Less than 1% of the yearly TP transport may take place during periods with high algal biomass.The observation of a high growth rate of phytoplankton in the rivers coinciding with high concentrations of RP, low content of seston and high TP:Chl a ratio, indicate that the growth was often not P-limiting. During short periods with high phytoplankton biomass the ratio TP:Chl a may be low, indicating that a high fraction of TP was available.The content of P in soil samples and in samples with high seston content was about 0.1% of dry weight, and the algal availability of P often varied between 25 and 75% of TP for both types of samples.Decreasing biomass or low growth rates were observed at secchi depths less than 0.5 m and seston concentrations less than about 25 mg dry weight 1–1. High flow rate also depressed the development of the total phytoplankton biomass. The assimilation of available P is incomplete under such conditions, i.e. under conditions of light limitation and high dilution rate.The availability of P for phytoplankton in rivers with different length, light conditions and stream velocity is discussed.  相似文献   

7.
Two dominant planktonic bloom‐forming algal species in a small shallow eutrophic pond were identified as Mallomonas elongata and Synura petersenii by electron microscopy. Their growth requirements were investigated as uni‐algal cultures in a laboratory study. The maximum population growth and maximum growth rate of M. elongata occurred at concentrations of 24 μM nitrate (NO3) and 5 μM phosphate (PO4) at a temperature of 15°C and a pH of 6. Synura petersenii grew maximally and exhibited the highest growth rate at a NO3 concentration of 24 μM and a PO4 concentration of 2 μM. Mallomonas elongata and S. petersenii had similar nutrient requirements for optimum growth, suggesting that the biomass of these two species can be controlled by nutrient gradients.  相似文献   

8.
1. The process‐based phytoplankton community model, PROTECH, was used to model the response of algal biomass to a range of mixed layer depths and extinction coefficients for three contrasting lakes: Blelham Tarn (eutrophic), Bassenthwaite Lake (mesotrophic) and Ullswater (oligotrophic). 2. As expected, in most cases biomass and diversity decreased with decreasing light availability caused by increasing the mixed depth and background extinction coefficient. The communities were generally dominated by phytoplankton tolerant of low light. Further, more novel, factors were identified, however. 3. In Blelham Tarn in the second half of the year, biomass and diversity did not generally decline with deeper mixing and the community was dominated by nitrogen‐fixing phytoplankton because that nutrient was limiting to growth. 4. In Bassenthwaite Lake, changing mixed depth influenced the retention time so that, as the mixed depth declined, the flushing rate in the mixed layer increased to the point that only fast‐growing phytoplankton could dominate. 5. In the oligotrophic Ullswater, changing the mixed depth had a greater effect through nutrient supply rather than light availability. This effect was observed when the mixed layer was relatively shallow (<5.5 m) and the driver for this was that the inflowing nutrients were added to a smaller volume of water, thus increasing nutrient concentrations and algal growth. 6. Therefore, whilst changes in mixed depth generally affect the phytoplankton via commonly recognized factors (light availability, sedimentation rate), it also affected phytoplankton growth and community composition through other important factors such as retention time and nutrient supply.  相似文献   

9.
In this study we manipulated both nitrogen and phosphorus concentrations in stream mesocosms to develop quantitative relationships between periphytic algal growth rates and peak biomass with inorganic N and P concentrations. Stream water from Harts Run, a 2nd order stream in a pristine catchment, was constantly added to 36 stream-side stream mesocosms in low volumes and then recirculated to reduce nutrient concentrations. Clay tiles were colonized with periphyton in the mesocosms. Nutrients were added to create P and N concentrations ranging from less than Harts Run concentrations to 128 μg SRP l−1 and 1024 μg NO3-N l−1. Algae and water were sampled every 3 days during colonization until periphyton communities reached peak biomass and then sloughed. Nutrient depletion was substantial in the mesocosms. Algae accumulated in all streams, even streams in which no nutrients were added. Nutrient limitation of algal growth and peak biomass accrual was observed in both low P and low N conditions. The Monod model best explained relationships between P and N concentrations and algal growth and peak biomass. Algal growth was 90% of maximum rates or higher in nutrient concentrations 16 μg SRP l−1 and 86 μg DIN l−1. These saturating concentrations for growth rates were 3–5 times lower than concentrations needed to produce maximum biomass. Modified Monod models using both DIN and SRP were developed to explain algal growth rates and peak biomass, which respectively explained 44 and 70% of the variance in algal response.  相似文献   

10.
A series of 4-day manipulations of zooplankton biomass and nutrientavailability was performed in enclosures in three lakes to determinespecies-specific algal responses to herbivory and nutrient enrichment.Algal performance in enclosures was compared to the relationshipsbetween weekly algal growth rates and the zooplankton in situ.When in situ growth rates were significant functions of zooplanktonbiomass, the responses were generally consistent with responsesin the enclosure experiments. The importance of both nutrientsand zooplankton in mediating algal growth was demonstrated bynumerous observations: strong algal community response to enrichment,unimodal or positive responses of certain algal taxa to zooplanktonbiomass, differences in degree of nutrient limitation amongthe algal response types, lack of nutrient limitation of non-grazedalgal taxa and a preponderance of taxa with no net responseto increasing zooplankton biomass. Variation in the zooplanktoncommunity may be the largest source of variability in nutrientsupply rate during summer in stratified lakes, and causes substationalvariability in the algae. Algae responded more strongly to changesin zooplankton composition than to changes in zooplankton biomass.We conclude that, due to the close coupling of phytoplanktonand zooplankton communities in these nutrient-limited lakes,major compositional changes in the zooplankton have greatereffects on the algae than do changes in biomass of grazers alreadypresent. 1Present address: Division of Environmental Studies, Universityof California, Davis, CA 95616, USA 2Present address: Division of Biological Sciences, Universityof California, Davis, CA 95616, USA  相似文献   

11.
The aim of this study is to develop a generic model that can predict algal photosynthetic activity as a function of total inorganic carbon and pH, which will assist in the design and operation of algal culture systems. This is important as the availability of inorganic carbon plays a critical role in algal growth and product accumulation, and in practice, pH is not constant in an algal culture. Hence, such a model will assist in predicting and understanding carbon limitation in algae growth and product accumulation systems. The model builds on published work on inorganic carbon uptake in natural algal systems and extends it to systematically account for wide pH and total inorganic carbon ranges. This study develops and validates a simple model which integrates a summative carbon dioxide and bicarbonate Monod kinetic relationship with inorganic carbon equilibrium chemistry. This is the first time that the algal photosynthetic oxygen production rate has been described as a function of both total inorganic carbon and pH. The model was tested against published and experimental data over an extended pH and total inorganic carbon range. Kinetic parameters estimated by the model match those presented in the literature. The Chlorella alga tested in the experiments showed little affinity for bicarbonate which agrees with previous observations for this alga.  相似文献   

12.
Microalgal biotechnology could generate substantial amounts of biofuels with minimal environmental impact if the economics can be improved by increasing the rate of biomass production. Chlorella kessleri was grown in a small‐scale raceway pond and in flask cultures with the entire volume, 1% (v/v) at any instant, periodically exposed to static magnetic fields to demonstrate increased biomass production and investigate physiological changes, respectively. The growth rate in flasks was maximal at a field strength of 10 mT, increasing from 0.39 ± 0.06 per day for the control to 0.88 ± 0.06 per day. In the raceway pond the 10 mT field increased the growth rate from 0.24 ± 0.03 to 0.45 ± 0.05 per day, final biomass from 0.88 ± 0.11 to 1.56 ± 0.18 g/L per day, and maximum biomass production from 0.11 ± 0.02 to 0.38 ± 0.04 g/L per day. Increased pigment, protein, Ca, and Zn content made the biomass produced with magnetic stimulation nutritionally superior. An increase in oxidative stress was measured indirectly as a decrease in antioxidant capacity from 26 ± 2 to 17 ± 1 µmol antioxidant/g biomass. Net photosynthetic capacity (NPC) and respiratory rate were increased by factors of 2.1 and 3.1, respectively. Loss of NPC enhancement after the removal of magnetic field fit a first‐order model well (R2 = 0.99) with a half‐life of 3.3 days. Transmission electron microscopy showed enlarged chloroplasts and decreased thylakoid order with 10 mT treatment. By increasing daily biomass production about fourfold, 10 mT magnetic field exposure could make algal oil cost competitive with other biodiesel feedstocks. Bioelectromagnetics 33:298–308, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Fourier transform infrared (FTIR) spectra were measured from cells of Microcystis aeruginosa and Protoceratium reticulatum, whose growth rates were manipulated by the availability of nutrients or light. As expected, the macromolecular composition changed in response to the treatments. These changes were species‐specific and depended on the type of perturbation applied to the growth regime. Microcystis aeruginosa showed an increase in the carbohydrate‐to‐protein ratio with decreased growth rates, under nutrient limitation, whereas light limitation induced a decrease of the carbohydrate‐to‐protein ratio with decreasing proliferation rates. The macromolecular pools of P. reticulatum showed a higher degree of compositional homeostasis. Only when the lowest light irradiance and nutrient availability were supplied, an increase of the carbohydrate‐to‐protein FTIR absorbance ratio was observed. A species‐specific partial least squares (PLS) model was developed using the whole FTIR spectra. This model afforded a very high correlation between the predicted and the measured growth rates, regardless of the growth conditions. On the contrary, the prediction based on absorption band ratios generally used in FTIR studies would strongly depend on growth conditions. This new computational method could constitute a substantial improvement in the early warning systems of algal blooms and, in general, for the study of algal growth, e.g. in biotechnology. Furthermore, these results confirm the suitability of FTIR spectroscopy as a tool to map complex biological processes like growth under different environmental conditions.  相似文献   

14.
Light limitations to algal growth in tropical ecosystems   总被引:1,自引:0,他引:1  
1. Spatial and temporal variations in algal concentrations are controlled in many aquatic ecosystems by the availability of solar irradiance, rather that nutrients or grazing. In such light limiting conditions, changes in the optical or hydrological characteristics of the water column will directly impact biomass concentrations. Here we develop and test an approach based on the relationship between available solar irradiance within the mixed layer and algal biomass concentrations. 2. As with most nutrient/biomass relationships, an increase in available solar energy favours an increase in biomass when light limitation prevails. The ratio between light/biomass is then used to determine a critical light requirement that can be used to estimate critical depth and compensation irradiance and open the way to exploring how changes in mixing depth and vertical attenuation may influence algal biomass concentrations. 3. This approach is used to describe real conditions in two disparate algal communities; the phytoplankton community in Lake Victoria, East Africa and the microphytobenthos community in the lacustrine system of Esteros del Iberá (South America). 4. Differences in the critical light requirement were used to examine the relative efficiency of the algal communities in their use of available solar energy. The tropical phytoplankton community showed similar energetic requirements to theoretical estimates and were found to be less efficient when compared with the phytobenthos community.  相似文献   

15.
Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation.  相似文献   

16.
1. Variation in depth of the mixed surface layer of temperate lakes should affect phytoplankton dynamics because, with increasing mixing depth, average light intensity in and specific sedimentation losses out of the mixed layer both decrease. 2. Our aim was to test a recent dynamic model which relates phytoplankton biomass and the availability of production‐limiting resources (light and dissolved mineral nutrients) to mixing depth and nutrient supply from external sources. 3. During summer stratification we sampled the mixed layers of 30 dimictic, phosphorus‐limited, oligo‐ to mesotrophic, mostly non‐humic lakes north of the Alps. 4. The results agree well qualitatively with model expectations. Algal concentration in the mixed layer was negatively related to mixing depth or its surrogate log‐transformed lake area. Light intensity at the bottom of the mixed layer decreased whereas the concentration of available, inorganic phosphorus increased with increasing mixing depth. Across all depths, higher total phosphorus content was accompanied by higher phytoplankton biomass, lower light availability, and higher inorganic phosphorus concentration. 5. Our data match the predicted shift with increasing mixing depth from predominantly nutrient limitation towards increased light limitation of algal biomass.  相似文献   

17.
18.
Mayer  Tim 《Hydrobiologia》2020,847(20):4145-4160

Protecting and restoring shallow tropical lakes and wetlands requires a knowledge of what shapes and controls algal dynamics and primary productivity in these systems. Algal community structure and composition can be regulated either through biotic or abiotic controls. Large-scale changes in fish populations can affect algal communities by altering food web dynamics and the physical and chemical properties of the aquatic environment. A reduction in fish biomass can lead to a reduction in algal biomass because of increased grazing by zooplankton and reduced availablity of nutrients. However, the omnivorous fish common in tropical systems often consume algae, and their reduction can increase algal biomass. There is a need for more information on the effect of fish removals/reductions in tropical systems. In a five-year study of a shallow, tropical pond in Hawaii, I investigated the water quality effects of tilapia removal following the occurrence of two natural fish die-offs. I describe the concurrent impacts of water-level fluctuations and the fish die-offs on the physical and chemical conditions of the pond and the subsequent changes in the algal community. Overall, nutrients, suspended sediment, organic matter, and algal biomass were significantly reduced and light availability significantly increased in the absence of tilapia.

  相似文献   

19.
Nutrients, algae and grazers in some British streams of contrasting pH   总被引:1,自引:0,他引:1  
1. The relationship between algal biomass accumulation, invertebrate colonization, and stream-water pH was investigated in seven streams in three regions of England and Wales. Possible nutrient limitation of algal production at all sites was examined with diffusion substrata. 2. Periphyton assemblages on experimental substrata after 30 days were dominated by diatoms, notably Eunotia spp., at all sites. Algal pigment concentration (chlorophyll a and phaeopigments) was not correlated with stream-water pH, and mean concentrations on control (unenriched) substrata ranged from 0.08 to 1.94 μg cm?2. 3. The growth response of periphyton to nutrient additions was site specific. Algal production was stimulated by nutrient additions at sites in the English Lake District and Llyn Brianne (south-west Wales), but not in the Ashdown Forest (southern England). 4. Larval Chironomidae were the main invertebrates retrieved from substrata at all sites. Within all three regions, larval abundance was positively related to algal pigment concentration (biomass). Abundance of the stonefly Nemurella pictetii was also positively correlated with algal biomass at the one site where it occurred. 5. Our results indicate that epilithic algal production in small, oligotrophic streams is unlikely to be determined primarily by pH. Neither do they support the view that an absence of grazers from acid streams is necessarily due to an inadequate food supply.  相似文献   

20.
Chlorophyll a and pheopigment standing stocks and fluxes were used during a two weeks colonization experiment in a productive tropical pond (Layo, Côte d'Ivoire) in order to establish a chlorophyll budget. The experiment started from an azoïc state (the pond was dried, limed and progressively filled with ground water). Algal production was the only input to the phytoplanktonic system, while grazing and algal sedimentation were the main outputs. Chlorophyll a reflected the algal biomass, and degradation pigments were considered as an index of grazing by zooplankton (here, protozoans and rotifers). An estimation of the input through the algal growth rate was performed for the two main biological events observed during the study. The first algal bloom, with a large picoplankton participation, was mainly regulated by microzooplankton (increase of the peak) and rotifers (decrease of the peak). The second bloom (exclusively nanoplankton) was regulated by rotifers (increase) and by sedimentation of living cells (decrease). This last process was related to a sudden exhaustion of ammonia in the water column. Because of the time-lag between algal proliferation and zooplanktonic bloom, the phytoplanktonic biomass was able to be adjusted according to the availability of nutrients. This self-regulation took the form of sinking of active algal cells, resulting in a transient reduction of the food available for rotifers. This process had drastic consequences in these shallow waters, since a major part of the phytoplankton produced was removed from the pelagic system. For an optimal exploitation of the natural resources of an aquaculture pond, a study of the equilibrium nutrients-phytoplankton-zooplankton would provide a basis for artificial intervention, with a view to limit the impact of this mode of natural regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号