首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Thirty-four cloned lines of mouse erythroleukemia (MEL) cells that showed impairment in hemoglobin sy nthesis induced by hemin were isolated from line 745. Among these lines, 75% showed a reduced or nil response to induction by dimethyl sulfoxide (DMSO) and/or hypoxanthine. Four of these clones (three lines nonresponsive to hemin and one not responsive to either hemin or DMSO) were further characterized for the amount of globin mRNA accumulated in the cytoplasm and for the rate of globin synthesis upon exposure to hemin or DMSO. None of the four were induced by hemin to accumulate globin mRNA and all had a reduced rate of globin synthesis by comparison with control line 745. Two of the four lines had a high uninduced level of cytoplasmic globin mRNA not matched by a corresponding rate of globin synthesis, suggesting that they may accumulate defective globin mRNAs.  相似文献   

2.
Early transport changes occurring during Friend erythroleukemic cell differentiation are reported. A decrease in the rate of 86Rb transport was observed beginning approximately five hours after stimulation with 1.5% dimethylsulfoxide (DMSO), a potent inducer of Friend cell differentiation. By 12 to 14 hours after DMSO addition, the transport rate had stabilized at close to 60% of control level. This decrease in the rate of 86Rb transport preceded a previously reported decrease in cell volume. Other chemical inducers of Friend cells, such as hypoxanthine and ouabain, also caused early decreases in 86Rb influx. In contrast, xanthine, which does not induce Friend cell differentiation, also did not affect 86Rb influx. The transport of two amino acid analogues, alpha-aminoisobutyric acid and 2-aminobicyclo [2,2,1]-heptane-2-carboxylic acid, which differ in their mode of uptake, was also measured following induction by DMSO. The transport rates of both compounds decreased after a 12-hour exposure to DMSO. In contrast, the uptake of 3H-colchicine, a drug which diffuses passively across the cell membrane, was not significantly affected. Studies with several variant cell lines which do not synthesize hemoglobin in response to DMSO indicate that these non-inducible cells can be divided into two classes--those that demonstrate early changes in transport very similar to the changes observed in inducible cell lines and those which exhibit only small changes in transport. Results obtained using a revertant clone have helped to distinguish between those transport changes which are associated with the induction of hemoglobin synthesis and those which are not. In addition, these early transport changes may be useful in defining the stage in the differentiation process at which a particular variant line is blocked.  相似文献   

3.
Addition of purine compounds to the growth medium of Escherichia coli and Salmonella typhimurium causes repressed synthesis of the purine biosynthetic enzymes. The repression is mediated through a regulatory protein, PurR. To identify the co-repressor(s) of PurR, two approaches were used: (i) mutations were introduced into purine salvage genes and the effects of different purines on pur gene expression were determined; (ii) purine compounds which dictate the binding of the PurR protein to its operator DNA were resolved by gel retardation. Both the in vivo and the in vitro data indicated that guanine and hypoxanthine are co-repressors. The toxic purine analogues 6-mercaptopurine and 6-thioguanine also activated the binding of PurR to its operator DNA.  相似文献   

4.
Friend virus-transformed mouse erythroleukemia (MEL) cells can be induced to undergo erythroid differentiation by a variety of compounds, including dimethyl sulfoxide (DMSO) and the adenosine analog xylosyladenine. The present studies have monitored the effects of the stable adenosine receptor ligand N6-phenylisopropyladenosine (PIA) on induction of MEL cell differentiation. PIA has been previously shown to stimulate adenylate cyclase activity in rat hepatic and mouse Leydig 1-10 cells as well as inhibit adenylate cyclase in adipocytes. In the present study, PIA was ineffective as an inducer of the differentiated MEL cell phenotype. However, the results demonstrate that PIA inhibits the induction of MEL cell differentiation by DMSO and xylosyladenine. The extent of this inhibition as determined by benzidine staining, induction of globin RNA, and loss of self-renewal capacity was dependent on PIA concentration. The results also demonstrate that PIA induces a rapid and sustained increase in cyclic AMP (cAMP) levels. Furthermore, there was a highly significant correlation between cAMP levels and inhibition of xylosyladenine-induced differentiation (r = 0.962, P less than 0.0005). This relationship is further supported by the demonstration that prostaglandins E1 and E2 increase MEL cell cAMP levels and inhibit induction of the differentiated MEL cell phenotype. Moreover, PIA inhibited induction of MEL cell differentiation by butyric acid, diazepam, hypoxanthine, and the aminonucleoside analog of puromycin. These results suggest that cAMP may act as a negative regulatory signal in the induction of MEL cell differentiation.  相似文献   

5.
In an effort to develop more potent inhibitors of purine nucleoside phosphorylase (PNP, EC 2.4.2.1) as immunosuppressive and anticancer chemotherapeutic agents, the affinity of the electrophoretically homogeneous enzyme from rabbit kidney for sixteen N9- and N7-beta-D-glucofuranuronosides and for C8-substituted beta-D-ribofuranosyl purines was determined. In all cases N7-substituted analogues of hypoxanthine and guanine were twice more active inhibitors of PNP than N9-substituted compounds. No effective inhibitors were found among the C8-substituted analogues, apparently due to the bulky C8-groups hindering rotation around the glycosidic bond and thus preventing optimal binding with the enzyme.  相似文献   

6.
The role of heme in erythroid development is investigated in erythroleukemic (Friend) cells. Exogenous hemin induces the accumulation of globin mRNA and globin protein in T3-Cl2 erythroleukemia cells to levels comparable to those induced by polar solvents, such as dimethylsulfoxide (DMSO). The hemin concentration required for maximal induction (10?4 M) is the same as that which stimulates globin message translation in reticulocytes or cell-free reticulocyte lysates. Hemin and DMSO together cause T3-Cl2 cells to accumulate 8–9 fold more globin mRNA than either inducer individually. The kinetics of globin mRNA induction in hemin as compared to DMSO are very different: globin message accumulation begins 4 hr after hemin addition, but not until 30–40 hr after DMSO addition. Biliverdin induces 20–40 fold less hemoglobin than hemin; delta-aminolevulinic acid and porphobilinogen do not induce.  相似文献   

7.
Induction of erythroid differentiation in ouabain-resistant murine erythroleukemia cells by ouabain is reported. Ouabain induction results in the appearance of hemoglobin-containing cells 12–24 hr earlier than induction of the same clone by dimethyl sulfoxide. The levels of globin mRNA after ouabain induction are similar in amount to the globin mRNA levels observed after induction by dimethyl sulfoxide. The concentration of ouabain required to induce hemoglobin synthesis depends upon the K+ ion levels in the culture medium. Lowering the extracellular K+ ion concentration 2–4 fold reduced by 10–40 fold the ouabain concentration necessary for the induction of hemoglobin synthesis. In low K+ medium (1.8 mM), ouabain is an effective inducer of hemoglobin synthesis at a concentration of 0.02 mM. This K+ effect is specific for ouabain induction, since induction by other inducers, such as dimethyl sulfoxide and dimethyl acetamide, does not exhibit this marked sensitivity to the levels of K+ ions in the culture medium. These results suggest that the binding of ouabain to the plasma membrane enzyme, NaK ATPase, is required for the induction of erythroid differentiation by ouabain. A small but significant proportion of wild-type, ouabain-sensitive cells also can be induced by ouabain, below ouabain concentrations that are toxic to these cells. The observation that the binding of ouabain to the NaK ATPase induces hemoglobin synthesis suggests that changes in the intracellular concentration of K+ ions may be involved in the control of erythroid differentiation in Friend erythroleukemic cells.  相似文献   

8.
Thiobacillus thiooxidans DSM 504 was shown to grow with adenine, hypoxanthine, xanthine and uric acid as sole sources of nitrogen. Growth with these compounds was observed after lag periods of varying lengths, unless the cells had been previously grown with the same purine base. The disappearance of adenine was accompanied by a temporary accumulation of hypoxanthine in the medium. The utilization of purines was inhibited by ammonia (1 mM). Guanine, pyrimidines and some other organic compounds were not utilized.Non-standard abbreviation U-14C uniformly labeled by 14C  相似文献   

9.
Treatment of Friend leukemia cells with BrdU, the thymidine analog which interferes with DMSO induced differentiation in these cells as well as the expression of differentiated character in many other cell systems, is capable of inducing erythroid differentiation. Globin mRNA, as assayed by hybridization to globin cDNA, increases 2.5- to 30-fold after appropriate treatment with BrdU. This effect was observed with several different subclones of three independent Friend tumor cell lines. After BrdU treatment, globin mRNA content may reach up to 10-20% of the levels in DMSO induced cultures. The induction of erythroid differentiation is also apparent when accumulated heme content or the appearance of benzidine positive cells is monitored. One Friend cell line (745) we examined was not induced by BrdU although it incorporated an amount of BrdU into its DNA comparable to that incorporated by the other cell lines. In addition, BrdU did interfere with DMSO induction in this cell line. These results suggest that two different mechanisms may be operative in regulating erythroid differentiation in Friend leukemia cells. While BrdU interferes with the mechanism activated by DMSO treatment, this analog could independently activate an alternative mechanism.  相似文献   

10.
11.
L Virág  C Szabó 《FASEB journal》2001,15(1):99-107
Purines such as adenosine, inosine, and hypoxanthine are known to have potent antiinflammatory effects. These effects generally are believed to be mediated by cell surface adenosine receptors. Here we provide evidence that purines protect against oxidant-induced cell injury by inhibiting the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Upon binding to broken DNA, PARP cleaves NAD+ into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins such as histones and PARP itself. Overactivation of PARP depletes cellular NAD+ and ATP stores and causes necrotic cell death. We have identified some purines (hypoxanthine, inosine, and adenosine) as potential endogenous PARP inhibitors. We have found that purines (hypoxanthine > inosine > adenosine) dose-dependently inhibited PARP activation in peroxynitrite-treated macrophages and also inhibited the activity of the purified PARP enzyme. Consistently with their PARP inhibitory effects, the purines also protected interferon gamma + endotoxin (IFN/LPS) -stimulated RAW macrophages from the inhibition of mitochondrial respiration and inhibited nitrite production from IFN/LPS-stimulated macrophages. We have selected hypoxanthine as the most potent cytoprotective agent and PARP inhibitor among the three purine compounds, and investigated the mechanism of its cytoprotective effect. We have found that hypoxanthine protects thymocytes from death induced by the cytotoxic oxidant peroxynitrite. In line with the PARP inhibitory effect of purines, hypoxanthine has prevented necrotic cell death while increasing caspase activity and DNA fragmentation. As previously shown with other PARP inhibitors, hypoxanthine acted proximal to mitochondrial alterations as hypoxanthine inhibited the peroxynitrite-induced mitochondrial depolarization and secondary superoxide production. Our data imply that purines may serve as endogenous PARP inhibitors. We propose that, by affecting PARP activation, purines may modulate the pattern of cell death during shock, inflammation, and reperfusion injury.  相似文献   

12.
1. When rabbit globin mRNA was incubated with rabbit reticulocyte lysate in the presence of various concentrations of nucleotides, globin synthesis was inhibited or stimulated dependent on dose. 2. Pyrimidine nucleotides inhibited protein synthesis at 0.3 mM, whereas 2 mM of purine nucleotides were required to cause similar inhibition. 3. Adenosine mono- and diphosphate inhibited globin synthesis at a concentration of only 1 mM; however, the sequence is AMP greater than ADP greater than ATP. 4. Translation arrest by these nucleotides was instantaneous. 5. These results suggest that these nucleotides may provide a structural component for maintaining the integrity, the conformation of mRNA or of the messenger ribonucleoprotein (mRNP).  相似文献   

13.
The requirements for purine nucleotide synthesis, the effects of purine analogues, and the metabolism of adenine in the bacterium Helicobacter pylori were investigated employing cell culture techniques and one-dimensional NMR spectroscopy. Bacterial cells grew and proliferated in media lacking preformed purines, indicating that H. pylori can synthesize purine nucleotides de novo to meet its requirements. Blocking of this pathway in the absence of sufficient preformed purines for salvage nucleotide synthesis led to cell death. Analogues of purine nucleobases and nucleosides taken up by the cells were cytotoxic, suggesting that salvage routes could be exploited for therapy. Adenine or hypoxanthine were able to substitute for catalase in supporting cell growth and proliferation, suggesting a role for these bases in maintaining the microaerophilic conditions essentially required by the bacterium. Received: 23 May 1997 / Accepted: 17 July 1997  相似文献   

14.
A key event in the initiation of the dimethyl sulfoxide (DMSO)-induced program of murine erythroleukemia (MEL) cell differentiation is a rise in the level of cytoplasmic calcium ions. Our interest in the present study is whether other inducers of the terminal erythroid differentiation program also act via a calcium-dependent pathway. Inhibition of calcium transport has been found to prevent the induction of MEL cell commitment by DMSO, butyric acid (BA), or hypoxanthine (HX). Enhancement of the calcium flux rate with A23187 or elevation of cytoplasmic calcium levels with FCCP stimulates the kinetics of commitment in response to all three inducers. These results suggest that of the inducers we have tested (DMSO, BA, and HX), all three act to initiate commitment via a common mechanism which involves modulation of cytoplasmic calcium levels.  相似文献   

15.
Grohs  Birgit M.  Kunz  Benno 《Current microbiology》1994,28(5):255-259
In this study the degradation of extracellular purines by the bacteriumParacoccus denitrificans was examined with aqueous purine solutions.Paracoccus denitrificans was able to decompose free purine bases and 5-mononucleotides. The nitrogen-containing products of the degradation were ammonia and urea. Purine uptake was the main control of purine decomposition. In the cases of guanine, xanthine, hypoxanthine, and urate, further control was exerted by induction. Furthermore, the uptake of the purines caused differences in the duration and temporal development of the substrate degration. It was also responsible for the inhibitory effects of the purines on the decomposition of one another when the substrates were used in mixtures. Also, fermentation parameters like biomass and purine concentration, pH, and temperature influenced the purine usage ofParacoccus denitrificans.  相似文献   

16.
beta-Glucosidase of Dictyostelium discoideum is inhibited by purines in the following order: adenine greater than adenosine greater than 6-methylaminopurine greater than hypoxanthine greater than inosine greater than purine greater than guanosine. Adenine inhibits activity by 50% at 1 to 2 mM. The kinetics are complex because the enzyme is stimulated by substrate and inhibited by glucose.  相似文献   

17.
Aspergillus mutants resistant to various purine analogues (purine, 8-azaguanine, 2-thioxanthine, and 2-thiouric acid) are defective in at least one step of purine uptake or breakdown. The properties of these mutants show that there are two uptake systems for purines, one which mediates the uptake of hypoxanthine, guanine, and adenine, and the other, xanthine and uric acid. Allantoinase-less strains are sensitive to the toxic effects of allantoin accumulation. They are severely inhibited when grown in the presence of naturally occurring purines. Mutant strains derived from these, resistant to naturally occurring purines, may be isolated. These are either wild-type revertants, or carry a second metabolic block in the uptake or breakdown of purines. The properties of these double mutants confirm the interpretation of the nature of the analogue-resistant mutants.  相似文献   

18.
A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection has been developed for the analysis of purines in urinary calculi. The method using gradient of methanol concentration and pH was able to separate 16 compounds: uric acid, 2,8-dihydroxyadenine, xanthine, hypoxanthine, allopurinol and oxypurinol as well as 10 methyl derivatives of uric acid or xanthine (1-, 3-, 7- and 9-methyluric acid, 1,3-, 1,7- and 3,7-dimethyluric acid, 1-, 3- and 7-methylxanthine). Limits of detection for individual compounds ranged from 0.006 to 0.035 mg purine/g of the stone weight and precision (CV%) was 0.5-2.4%. The method enabled us to detect in human uric acid stones admixtures of nine other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methylated purines (1-, 3- and 7-methyluric acid, 1,3-dimethyluric acid, 3- and 7-methylxanthine) originating from the metabolism of methylxanthines (caffeine, theophylline and theobromine). The method allows simultaneous quantitation of all known purine constituents of urinary stones, including methylated purines, and may be used as a reference one for diagnosing disorders of purine metabolism and research on the pathogenesis of urolithiasis.  相似文献   

19.
Hypoxanthine is present in preparations of follicular fluid and has been shown to suppress the spontaneous meiotic maturation of mammalian oocytes in vitro. The present experiments examined the possible role of hypoxanthine metabolism in mediating this meiotic arrest. Four putative inhibitors of the enzyme, hypoxanthine phosphoribosyltransferase (HPRT), which metabolizes hypoxanthine to inosine monophosphate, were tested on lysates of oocyte-cumulus cell complexes. At a concentration of 1 mM, 6-mercapto-9-(tetrahydro-2-furyl)-purine (MPTF) and 6-mercaptopurine (6-MP) suppressed enzymatic activity by 86% and 98%, respectively, while 6-azauridine and 2,6-bis-(hydroxyamino)-9-β-D-ribofuranosyl-purine had no effect. MPTF and 6-MP increased the inhibitory effect of hypoxanthine on germinal vesicle breakdown, but the other agents did not. The 2 active agents had similar effects on salvage activity and hypoxanthine-maintained meiotic arrest in denuded oocytes. Also, oocytes from XO mice were more sensitive to the meiosis-arresting action of hypoxanthine than oocytes from XX littermates, which have twice the HPRT activity. The actions of the HPRT inhibitors were not due to their conversion to nucleotides via HPRT and negative feedback on purine de novo synthesis, because azaserine and 6-methylmercaptopurine riboside, which are more potent inhibitors of de novo synthesis, had a stimulatory, rather than inhibitory, effect on hypoxanthine-arrested oocytes. Furthermore, several lines of evidence indicate that metabolism of hypoxanthine to xanthine and uric acid by xanthine oxidase does not mediate the inhibitory action of this purine base on meiotic maturation. The data therefore suggest that nonmetabolized hypoxanthine is responsible for the meiotic arrest observed, most likely through suppression of cAMP degradation. © 1993 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号