首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Human platelet nucleotides were labelled by incubating platelet-rich plasma with [U-(14)C]adenine. With such platelets, the effects of prostaglandin E1, theophylline and aspirin were determined on collagen-induced platelet aggregation and release of platelet ATP and ADP. Intracellular changes of platelet radioactive nucleotides, particularly 3':5'-cyclic AMP, were also determined both with and without collagen treatment. 2. Prostaglandin E1, theophylline and aspirin inhibited collagen-induced aggregation of platelets in a dose-dependent manner. Collagen-induced release of ATP and ADP and breakdown of radioactive ATP were also inhibited in a dose-dependent manner. 3. Prostaglandin E1 stimulated the formation of platelet radioactive 3':5'-cyclic AMP in a dose-dependent manner. With a given dose of prostaglandin E1, maximum formation of radioactive 3':5'-cyclic AMP occurred by 10-30s and thereafter the concentrations declined. The degree of inhibition of aggregation produced by prostaglandin E1, however, increased with its time of incubation in platelet-rich plasma before addition of collagen, so that there was an inverse relationship between the radioactive 3':5'-cyclic AMP concentration measured at the time of collagen addition and the subsequent degree of inhibition of aggregation obtained. 4. Neither theophylline nor aspirin at a concentration in platelet-rich plasma of 1.7mm altered platelet radioactive 3':5'-cyclic AMP contents. In the presence of prostaglandin E1, theophylline increased the concentration of radioactive 3':5'-cyclic AMP over that noted with prostaglandin E1 alone, but aspirin did not. 5. Mixtures of prostaglandin E1 and theophylline had a synergistic effect on inhibition of platelet aggregation. The same was true to a lesser extent with mixtures of prostaglandin E1 and aspirin. Such mixtures also inhibited collagen-induced release of platelet ATP and ADP and breakdown of platelet radioactive ATP. 6. Certain concentrations of either theophylline or aspirin and mixtures of small concentrations of prostaglandin E1 with either theophylline or aspirin caused little or no increase of radioactive 3':5'-cyclic AMP at the time of collagen addition, but inhibited aggregation to a marked degree, whereas higher concentrations of prostaglandin E1 alone caused a much greater increase of radioactive 3':5'-cyclic AMP at the time of collagen addition but inhibited aggregation to a lesser extent. With these compounds there does not appear to be a correlation between these parameters.  相似文献   

2.
The present study has evaluated the influence of semi-synthetic platelet-aggregating factor, (PAF) i.e., alkylacetylglycerophosphocholine, on human platelet morphology, biochemistry and function in order to determine if PAF serves as the corrective factor restoring sensitivity to refractory platelets after treatment with epinephrine. Threshold concentrations of PAF caused irreversible platelet aggregation which could be blocked by agents elevating endogenous levels or cyclic AMP or inhibited by antagonists of platelet prostaglandin synthesis and secretion. PAF did not stimulate platelets through α-adrenergic receptors or receptors for arachidonate, endoperoxides or thromboxanes. 24 h after aspirin ingestion, platelets could be aggregated irreversibly by high concentrations, but not by threshold amounts of PAF, even though they were still insensitive to arachidonate. Another less potent PAF derivative, alkenylacetylglycerophosphocholine, blocked aggregation of 24-h aspirin platelets by PAF, but did not inhibit restoration of arachidonate sensitivity and irreversible aggregation when the samples were treated first with epinephrine. Our findings indicate that threshold amounts of PAF activate human platelets in a physiologic manner and cause irreversible aggregation which is dependent on prostaglandin synthesis and the release reaction. The results do not support the concept that PAF is the mediator of the mechanism of membrane modulation through which epinephrine induces correction of the refractory state in prostaglandin I2-treated or dissociated platelets, or cells obtained from individuals following aspirin ingestion. Thus, the mechanism of platelet membrane modulation is capable of securing irreversible aggregation of secretion, prostaglandin synthesis or PAF formation.  相似文献   

3.
Some years ago we detected a lack of platelet high-affinity PGI2 binding sites in a 10 year-old girl who presented to the outpatient unit with clinical symptoms and signs of acute popliteal artery occlusion. We named this new defect in the prostaglandin system "Wien-Hietzing". Acute surgery was successful. On the basis of earlier findings that aspirin is able to sensitize platelets to the action of PGI2 and produce beneficial changes in platelet sensitivity, we decided to treat this girl with a daily dosage of 20 mg aspirin orally. Repeated control examinations during the total follow-up period of about 6 years revealed normalized platelet sensitivity and normalized receptor behaviour. The girl is symptom-free to date. It is concluded that this prostaglandin defect may be successfully treated with long-term, low-dose aspirin administration.  相似文献   

4.
Fluid of artificial blisters from erythromelalgic skin areas in primary thrombocythaemia contained a high amount of prostaglandin-E-like activity. Dazoxiben did not alleviate the erythromelalgia in patients with primary thrombocythaemia despite complete inhibition of platelet malondialdehyde and thromboxane B(2) synthesis and no inhibition of prostaglandin-E-like material. During a 10-day dazoxiben treatment period, persistent erythromelalgia was associated with a significant shortened mean platelet life span of 3.2 days. During subsequent treatment with low dose acetylsalicylic acid daily complete relief of erythromelalgia was associated with inhibition of platelet prostaglandin endoperoxide production and correction of platelet mean life span to normal, 7.9 days. These observations indicate that prostaglandin E(2), or another prostaglandin endoperoxide metabolite, is involved in the pathogenesisof erythromelalgia. The presented study does not give one single clue as to the origin (platelet, vessel wall or other) of the prostanoid, but very likely originates from platelets because a very low dose of acetylsalicylic acid (250 to 500 mg every other day), which irreversibly inhibits platelet cyclooxygenase, is highly effective in the prevention of erythromelalgia in thrombocythaemia.  相似文献   

5.
Platelets metabolize arachidonic acid to thromboxane A2, a potent platelet aggregator and vasoconstrictor compound. The first step of this transformation is catalyzed by prostaglandin (PG) G/H synthase, a target site for nonsteroidal antiinflammatory drugs. We have isolated the cDNA for both human platelet and human erythroleukemia cell PGG/H synthase using the polymerase chain reaction and conventional screening procedures. The cDNA encoding the full-length protein was expressed in COS-M6 cells. Microsomal fractions from transfected cells produced prostaglandin endoperoxide-derived products which were inhibited by indomethacin and aspirin. Mutagenesis of the serine residue at position 529, the putative aspirin acetylation site, to an asparagine reduced cyclooxygenase activity to barely detectable levels, an effect observed previously with the expressed sheep vesicular gland enzyme. Platelet-derived growth factor and phorbol ester differentially regulated the expression of PGG/H synthase mRNA levels in the megakaryocytic/platelet-like HEL cell line. The PGG/H synthase gene was assigned to chromosome 9 by analysis of a human--hamster somatic hybrid DNA panel. The availability of platelet PGG/H synthase cDNA should enhance our understanding of the important structure/function domains of this protein and its gene regulation.  相似文献   

6.
An in vitro coronary artery preparation of beef heart was found to synthesize and release continuously large amounts of a prostaglandin of the E type. Inhibition of prostaglandin synthesis with aspirin, indomethacin, or eicosa-5,8,11,14-tetraynoic acid induced a sustained contraction of the coronary artery, and pretreatment with indomethacin diminished markedly the output of prostaglandin into the bathing medium. It appears that prostaglandin E1, generated from within the vessel wall itself, may act as an intrinsic regulator of coronary artery tone in the beef heart, and that blockade of this function leads to vasospasm.  相似文献   

7.

Aims

To investigate functional platelet recovery after preoperative withdrawal of aspirin and clopidogrel and platelet function 5 days after treatment resumption.

Methods/Results

We conducted an observational study, which prospectively included consecutive patients taking aspirin, taking clopidogrel, and untreated controls (15 patients in each group). The antiplatelet drugs were withdrawn five days before surgery (baseline) and were reintroduced two days after surgery. Platelet function was evaluated by optical aggregation in the presence of collagen, arachidonic acid (aspirin) and ADP (clopidogrel) and by VASP assay (clopidogrel). Platelet-leukocyte complex (PLC) level was quantified at each time-point. At baseline, platelet function was efficiently inhibited by aspirin and had recovered fully in most patients 5 days after drug withdrawal. PLC levels five days after aspirin reintroduction were similar to baseline (+4±10%; p = 0.16), in line with an effective platelet inhibition. Chronic clopidogrel treatment was associated with variable platelet inhibition and its withdrawal led to variable functional recovery. PLC levels were significantly increased five days after clopidogrel reintroduction (+10±15%; p = 0.02), compared to baseline.

Conclusions

Aspirin withdrawal 5 days before high-bleeding-risk procedures was associated with functional platelet recovery, and its reintroduction two days after surgery restored antiplaletet efficacy five days later. This was not the case of clopidogrel, and further work is therefore needed to define its optimal perioperative management.  相似文献   

8.
9.
There is evidence that the overall effects of prostaglandin E(2) (PGE(2)) on human platelet function are the consequence of a balance between promotory effects of PGE(2) acting at the EP3 receptor and inhibitory effects acting at the EP4 receptor, with no role for the IP receptor. Another prostaglandin that has been reported to affect platelet function is prostaglandin E(1) (PGE(1)), however the receptors that mediate its actions on platelet function have not been fully defined. Here we have used measurements of platelet aggregation and P-selectin expression induced by the thromboxane A(2) mimetic U46619 to compare the effects of PGE(1) and PGE(2) on platelet function. Their effects on vasodilator-stimulated phosphoprotein (VASP) phosphorylation, as a marker of cAMP, were also determined. We also investigated the ability of the selective prostanoid receptor antagonists CAY10441 (IP antagonist), DG-041 (EP3 antagonist) and ONO-AE3-208 (EP4 antagonist) to modify the effects of the prostaglandins on platelet function. The results obtained confirm that PGE(2) interacts with EP3 and EP4 receptors, but not IP receptors. In contrast PGE(1) interacts with EP3 and IP receptors, but not EP4 receptors. In both cases the overall effects on platelet function reflect the balance between promotory and inhibitory effects at receptors that have opposite effects on adenylate cyclase.  相似文献   

10.
We have utilized ionophores to test whether stimulation of chondrocyte prostaglandin biosynthesis is accompanied by an increase in cyclic nucleotide levels in these cells. Radioimmunoassay of prostaglandin E2, 6-oxo-prostaglandin F1 alpha (the stable metabolite of prostaglandin I2) and prostaglandin F2 alpha showed that synthesis of each was stimulated by the divalent-cation ionophore, A23187 after short-term incubation (1-7 min) in serum-free medium. No stimulation of thromboxane B2 was detected. Two monovalent ionophores, lasalocid and monensin failed to stimulate prostaglandin biosynthesis after short-term incubation. Ionophore A23187-stimulated prostaglandin biosynthesis was variably and partially inhibited by sodium meclofenamate, indomethacin and aspirin, but not by sodium salicylate. Ionophore A23187-stimulated prostaglandin biosynthesis was accompanied by a 7.5-fold increase in cyclic AMP levels after 15 min. Sodium meclofenamate, indomethacin and aspirin which inhibited prostaglandin E2 biosynthesis also reduced cyclic AMP levels. Exogenous prostaglandin E2 (1 microgram/ml) stimulated cyclic AMP biosynthesis, which was not inhibited by aspirin. These results indicated that prostaglandins can be considered as one of the local effectors controlling cyclic AMP production in articular cartilage.  相似文献   

11.
Thromboxane A2 plays an important role in arachidonic acid- and prostaglandin H2-induced platelet aggregation. Agents that stimulate platelet adenylate cyclase (prostaglandin I2, prostaglandin I1 and prostaglandin E1) and dibutyryl cyclic AMP inhibit both thromboxane A2 formation and arachidonate-induced aggregation in platelet-rich plasma. Despite complete suppression of aggregation with agents that elevate cyclic AMP, considerable thromboxane A2 is still formed. Prostaglandin H2-induced aggregations which bypass the cyclooxygenase regulatory step are also inhibited by agents that elevate cyclic AMP without any measurable effect on thromboxane A2 production. These data demonstrate that cyclic AMP can inhibit platelet aggregation by a mechanism independent of its ability to suppress the cyclooxygenase enzyme. Parallel experiments with washed platelet preparations suggest that they may be an inadequate model for studying the relationship between the platelet cyclooxygenase and platelet function.  相似文献   

12.
The occurrence of aspirin resistance has been inferred by the assessment of platelet aggregation ex vivo in patients with ischemic vascular syndromes taking aspirin. Since aspirin is a weak inhibitor of the inducible isoform of prostaglandin H synthase (COX-2), it was suggested that COX-2 may play a role in aspirin resistance. However the cellular source(s) of COX-2 possibly responsible for aspirin resistance remains unknown. Recently, the expression of the inducible isoform of COX-2 in circulating human platelets was reported. To investigate the possible contribution of COX-2 expression in platelet thromboxane (TX) biosynthesis, we have compared the inhibitory effects of NS-398 and aspirin, selective inhibitors of COX-2 and COX-1, respectively, on prostanoid biosynthesis by thrombin-stimulated platelets vs lipopolysaccharide (LPS)stimulated monocytes (expressing high levels of COX-2) isolated from whole blood of healthy subjects. NS-398 was 180-fold more potent in inhibiting monocyte COX-2 activity than platelet TXB2 production. In contrast, aspirin (55 micromol/L) largely suppressed platelet TXB2 production without affecting monocyte COX-2 activity. By using specific Western blot techniques, we failed to detect COX-2 in platelets while COX-1 was readily detectable. Our results argue against the involvement of COX-2 in TX biosynthesis by activated platelets and consequently dispute platelet COX-2 expression as an important mechanism of aspirin resistance.  相似文献   

13.
Lipid peroxidation induced by ascorbic acid and Fe2+ was inhibited by mepacrine (phospholipase A2 inhibitor) and aspirin (prostaglandin cyclo-oxygenase inhibitor) in rabbit kidney-medulla slices. Moreover, ascorbic acid and Fe2+ potentiated the inhibitory effect on prostaglandin E2 formation by mepacrine, but they had no influence on prostaglandin E2 production decreased by aspirin. Lipid peroxidation induced by ascorbic acid and Fe2+ appears to be affecting the activity of prostaglandin endoperoxide synthase. These results suggest that lipid peroxidation is connected closely with the prostaglandin-generating system, and it has the potential to modulate the turnover of arachidonic acid and prostaglandin synthesis.  相似文献   

14.
本文报道了一种快速、灵敏的血小板释放功能检测方法:利用荧光素-荧光素酶在有ATP、Mg~(2+)、O_2存在时产生的生物发光素测定血小板ATP的释放量,以反映血小板的释放功能;研究了ADP、AA、胶原、凝血酶等四种诱导剂对血小板释放功能的作用,发现ADP的诱导释放能力较其他三者为弱;观察在不同剂量ADP和AA的诱导下,血小板聚集强度和释放能力之间的关系,研究了血小板数等因素对ATP释放功能测定的影响。应用该方法研究了Aspirin及活血化淤药物川芎嗪,毛冬青甲素对血小板释放功能的影响,发现Aspirin对AA诱导的释放反应有强烈的抑制作用。在以ADP诱导的释放反应中,川芎嗪的抑制作用较毛冬青甲素更为强烈。  相似文献   

15.
Effects of acetaminophen on the renal inner medullary production of prostaglandin E2 and F were compared with the well-known effects of aspirin on this process. Acetaminophen was found to elicit a dose-dependent inhibition of both prostaglandin E2 and F accumulation in media with a Ki of 100–200 μM. This inhibition could not be accounted for by increased accumulation of prostaglandins within slices. Acetaminophen inhibition was reversed by removal of acetaminophen during the incubation or by addition of arachidonic acid. Similar manipulations did not reverse aspirin or indomethacin-mediated inhibition of prostaglandin synthesis. Thin-layer and gas chromatographic analysis of acetaminophen following incubation with slices demonstrated that this material was identical to authentic acetaminophen. This, in addition to the lack of an effect of glutathione on inhibition, suggests that acetaminophen does not have to be metabolized to exert this inhibition. Arachidonic acid did not alter the metabolism or increase the efflux of acetaminophen. Lower levels of prostaglandin E2 observed with 5 mM acetaminophen and 1 mM aspirin caused a corresponding decrease in cyclic AMP content. Removal of acetaminophen from the second incubation or addition of arachidonic acid caused increases in both prostaglandin E2 and cyclic AMP. Aspirin inhibition of cyclic AMP content was not reversed by similar manipulations. In vivo inhibition of inner medullary prostaglandin E2 and prostaglandin F synthesis was observed 2 h after a 375 mg/kg, intraperitoneal injection of acetaminophen. These data suggest that acetaminophen, like aspirin, is capable of reducing tissue prostaglandin synthesis. However, the mechanisms by which these two analgesic and antipyretic agents elicit their inhibition of prostaglandin synthesis are quite different.  相似文献   

16.
The effect of prostaglandins E1 and F1 alpha on peptidoleukotriene biosynthesis/release from rat chopped lung stimulated with platelet activating factor was studied. Prostaglandin E1, known to stimulate adenylate cyclase in airways, inhibited the biosynthesis of leukotrienes C4, D4 and E4 and total peptidoleukotrienes whereas prostaglandin F1 alpha, which has no effect on adenylate cyclase, did not exert any effect on total peptidoleukotriene release, though a small inhibition was found for leukotriene D4. Cyclic AMP itself inhibited peptidoleukotriene release from platelet activating factor-stimulated lung, suggesting that the effect of prostaglandin E1 is mediated by cyclic AMP.  相似文献   

17.
Aspirin causes peptic ulcers predominately by reducing gastric mucosal cyclooxygenase (COX) activity and prostaglandin synthesis. Because aspirin circulates for only a few hours, we hypothesized that aspirin's inhibitory effect on gastric COX activity must be prolonged. We performed a placebo-controlled experiment in healthy humans to determine the duration of inhibition of aspirin on gastric mucosal COX activity (PGE(2) and PGF(2alpha) synthesis rates). Recovery of gastric COX activity after stopping aspirin was slow and linear. Seventy-two hours after 325-mg aspirin, gastric COX activity was still reduced by 57% (P < 0.001). Duration of inhibition of gastric COX activity was estimated to be 7-8 days after 325-mg aspirin and 5 days after 81-mg aspirin. Recovery of gastric prostaglandin synthesis after 325-mg but not after 81-mg aspirin occurred at slower rates in subjects with Helicobacter pylori-associated gastritis than in those with normal histology. In conclusion, aspirin inhibits gastric COX activity for much longer than predicted from its pharmacokinetic profile, explaining why aspirin at widely spaced intervals is ulcerogenic.  相似文献   

18.
Platelet function is inhibited by prostaglandin E1, prostaglandin I2, or forskolin, agents that increase the intracellular concentration of cyclic AMP. The inhibition appears to result from cyclic AMP-stimulated phosphorylation of specific intracellular proteins. One of the major increases in phosphorylation occurs in a polypeptide of Mr = 24,000 (P24). In this study, an effort was made to identify P24. Platelets prelabeled with [32P]phosphate were incubated with prostaglandin E1, prostaglandin I2, or forskolin. Proteins that became phosphorylated were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels. Several lines of evidence indicated that P24 was the beta-subunit of the plasma membrane glycoprotein (GP) Ib, a glycoprotein that is essential for the adhesion of platelets to damaged subendothelium, for the rapid response of platelets to thrombin, and for the attachment of the membrane skeleton to the cytoplasmic face of the plasma membrane. P24 co-migrated with GP Ib beta on reduced gels (Mr = 24,000) and also on nonreduced gels (when GP Ib beta is disulfide-linked to GP Ib alpha and migrates with Mr = 170,000). Like GP Ib beta, P24 was associated with actin filaments in Triton X-100 lysates. Like GP Ib beta, it was selectively associated with filaments of the membrane skeleton and was released from filaments when the Ca2+-dependent protease was active. Antibodies against GP Ib immunoprecipitated P24 from platelet lysates. Finally, exposure of Bernard-Soulier platelets (which lack GP Ib) to prostaglandin E1 resulted in phosphorylation of other polypeptides, but not of P24. These studies show that P24, one of the major polypeptides phosphorylated when platelets are exposed to agents that inhibit platelet function by increasing the concentration of cyclic AMP, is the beta-subunit of GP Ib.  相似文献   

19.
The level of cyclic 3',5'-adenosine monophosphate (cAMP) in human platelets and the activity of platelet adenylate cyclase in response to prostaglandin E1 stimulation do not change during two days storage at room temperature in ACD solution. However, the level of cyclic AMP is lower in platelets stored in ACD solution than in platelets from blood anticoagulated by ethylenediamine tetra-acetic acid.  相似文献   

20.
The present study has investigated the influence of arachidonate, endoperoxide analogs, and the calcium ionophore A23187 on platelet aggregation and on the phosphorylation of platelet proteins. Following stimulation of platelets by these agents a rapid increase in phosphorylation of three proteins was observed which began at the same time as the initial formation of platelet aggregates. These three proteins were the 260,000 dalton actin-binding protein, a 40,000 dalton protein of unknown function, and the 20,000 dalton myosin light chain. When extensive aggregation was reached, the extent of phosphorylation returned toward baseline. Pretreatment of platelets with aspirin completely inhibited both aggregation and protein phosphorylations induced by arachidonate, but had only partial inhibitory effects on endoperoxide analogs or A23187. Since endoperoxide analogs and A23187 may trigger endogenous production of prostaglandin endoperoxides and thromboxane A2, in addition to having a direct effect of their own, it is probable that the partial inhibition seen was due to inhibition of that component of their effect due to this endogenous production, through other effects of aspirin can not be entirely ruled out. Since recent evidence shows that phosphorylation of myosin light chain results from calcium stimulation of a protein kinase in the presence of calmodulin, the results are consistent with mobilization of calcium as the primary role of the arachidonate-endoperoxide-thromboxane pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号