首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to test rigorously the transient behaviour of mathematical models of algal growth, detailed laboratory data sets with good temporal resolution are required. A series of algal growth experiments was conducted in transient conditions. Monoculture growth of, and competition for nutrients between, three contrasting species of phytoplankton (the diatom Thalassiosira pseudonana, the harmful flagellate Heterosigma carterae and the toxic dinoflagellate Alexandrium minutum) were investigated in different temperature, light and nutrient regimes. Although growth dynamics were qualitatively similar in batch culture, quantitative differences were evident in the growth response of the different species when grown in single yield-limiting nutrient conditions in identical physical conditions. Quantities such as the carbon:nitrogen (C:N) ratio and C and N per cell varied between species and within species under different growth conditions. Such results have particular significance to the development of mathematical models, which commonly represent algal populations as a single homogeneous group using a single currency such as numbers, C or N. Changes in light and temperature regime influenced algal growth: Alexandrium failed to grow at low temperatures, while specific growth rates of Thalassiosira were more sensitive to changes in temperature than those of Heterosigma. Changes in the dominant organism(s) and/or its size or nutrient status may influence the transfer of nutrients within the food web. Commonly, mathematical models make cell growth a function of a single yield-limiting nutrient. Decreased growth rates and high residual nutrient concentrations in competition experiments indicate that this approach is unlikely to be successful in conditions of limited supply of more than one nutrient, where multiple nutrient stresses will be significant.   相似文献   

3.
The development of molecular probe technologies over the last several decades has enabled more rapid and specific identification and enumeration of phytoplankton species compared to traditional technologies, such as light microscopy. Direct comparisons of these methods with respect to physiological status, however, are sparse. Here we directly compare quantitative real-time PCR (qPCR) and sandwich hybridization assay (SHA) for enumerating the raphidophyte Heterosigma akashiwo at several points during its growth phase, over a diel cycle and with macronutrient stress in laboratory cultures. To ensure consistency between comparisons, a single cellular homogenate was generated from each culture and split for analysis by qPCR and SHA. Since the homogenate was generated from the same number of cells during each experiment, results reflect changes in nucleic acid content (rRNA and DNA) at each time point or in response to environmental conditions relative to a reference sample. Results show a greater level of precision in SHA results which contributed to significant (2–3 fold) differences in rRNA content per cell in several of these analyses. There was significantly greater rRNA content during lag and exponential phases compared to stationary phase cultures, and a significant decrease in rRNA content during the light cycle compared to cells harvested in the dark. In contrast, there were no significant differences in DNA content per cell as determined by qPCR over a diel cycle or during different growth phases. There was also no decrease in either rRNA or DNA content for cultures under low P conditions compared to nutrient replete conditions. However, both rRNA and DNA content were significantly lower under N stress when compared to nutrient replete conditions. Results of this study suggest that growth stage, nutrient stress and cell cycle may impact molecular analyses, and that physiological status should be taken into account when using these methods for HAB monitoring.  相似文献   

4.
The influence of growth irradiance on the non-steady-state relationship between photosynthesis and tissue carbon (C) and nitrogen (N) pools in Chaetomorpha linum (Muller) Kutzing in response to abrupt changes in external nitrogen (N) availability was determined in laboratory experiments. For a given thallus N content, algae acclimated to low irradiance consistently had a higher rate of light-saturated photosynthesis (Pmax normalized to dry weight) than algae acclimated to saturating irradiance; for both treatments, Pmax was correlated to thallus N. Both Pmax and the photosynthetic efficiency (αdw) were correlated in C. linum grown at either saturating or limiting irradiance over the range of experimental conditions, indicating that variations in electron transport were coupled to variations in C-fixation capacity despite the large range of tissue N content from 1.1% to 4.8%. Optimizing both α and Pmax and thereby acclimating to an intermediate light level may be a general characteristic of thin-structured opportunistic algae that confers a competitive advantage in estuarine environments in which both light and nutrient conditions are highly variable. Nitrogen-saturated algae had the same photosynthesis–irradiance relationship regardless of light level. When deprived of an external N supply, photosynthetic rates did not change in C. linum acclimated to low irradiance despite a two-fold decrease in tissue N content, suggesting that the active pools of chlorophyll and Rubisco remained constant. Both α and Pmax decreased immediately and continuously in algae acclimated to high irradiance on removal of the N supply even though tissue N content was relatively high during most of the N-starvation period, indicating a diversion of energy and reductant away from C fixation to support high growth rates. Carbon and nitrogen assimilation were equally balanced in algae in both light treatments throughout the N-saturation and -depletion phases, except when protein synthesis was limited by the depletion of internal N reserves in severely N-starved high-light algae and excess C accumulated as starch stores. This suggests that the ability for short-term adjustment of internal allocation to acquire N andC in almost constant proportions may be especially beneficial to macroalgae living in environments characterized by high variability in light levels and nutrient supply.  相似文献   

5.
Cell division patterns in Thalassiosira weissflogii (Grun.), Hymenomonas carterae (Braarud and Fagerl), and Amphidinium carteri (Hulburl) grown in cyclostat culture were analyzed as functions of the periodic supply of light and the limiting nutrient (ammonium) and of combinations of these two factors. In all three species, division patterns were phased by light/dark cycles in N–limited as well as N–replte conditions, and also to ammonium pulses in N–limited growth in continuous light. Both the degree and timing of the cell cycle phasing varied among species. When both stimuli were present, the influence of the photocycle overrode the N–pulse stimulus in H. carterae and A. carteri. while in T. weissflogii, division was always phased by the timing of the N–pulse regardless of the phase angle between the photocycle and the pulse.  相似文献   

6.
The blue-green alga Synechococcus linearis (Naeg.) Kom. was grown in P- and N-limited chemostats over a range of potentially limiting irradiances in order to determine the combined effects of light and nutrient limitation on some aspects of the composition and metabolism of this alga. Over a narrow range of low irradiances, simultaneous limitation of growth rate by light and either N or P was shown. This simultaneous limitation of growth rate by a nutrient and a physical factor can be explained by the ability of an increased supply of one to compensate in part for a decreased supply of the other. At all irradiances, the internal concentration of the limiting nutrient increased with increasing dilution rate, and the results could be fitted to the Droop relationship. With decreasing irradiance, the internal concentration of the limiting nutrient increased. There appeared to be little or no effect of light on the minimum internal concentration of P but that of N increased with decreasing light. Both chlorophyll a and biliprotein per unit particulate C increased with increasing dilution rate and decreasing irradiance. The critical N/P ratio increased with decreasing light as the N requirement of N-limited cells increased faster than did the P requirement of P-limited cells. The composition of exponentially growing cells in complete medium varied much less with light. Neither dilution rate nor irradiance during growth had a great effect on saturated rates of P or N uptake or alkaline phosphatase activity. Calculated assimilation ratios increased with light and dilution rate. The role of the flexibility of nutrient composition in adaptation to adverse conditions and the implications of the results for the use of physiological indicators of nutrient status are discussed.  相似文献   

7.
Despite their difference in potential growth rate, the slow-growing Brachypodium pinnatum and the fast-growing Dactylis glomerata co-occur in many nutrient-poor calcareous grasslands. They are known to respond differently to increasing levels of N and P. An experiment was designed to measure which characteristics are affected by nutrient supply and contribute to the ecological performance of these species. Nutrient acquisition and root and shoot traits of these grasses were studied in a garden experiment with nine nutrient treatments in a factorial design of 3 N and 3 P levels each. D. glomerata was superior to B. pinnatum in nutrient acquisition and growth in all treatments. B. pinnatum was especially poor in P acquisition. Both species responded to increasing N supply and to a lesser extent to increasing P supply by decreasing their root length and increasing their leaf area per total plant weight. D. glomerata showed a higher plasticity. In most treatments, the root length ratio (RLR) and the leaf area ratio (LAR) were higher for D. glomerata. A factorization of these parameters into components expressing biomass allocation, form (root fineness or leaf thickness) and density (dry matter content) shows that the low density of the biomass of D. glomerata was the main cause for the higher RLR and LAR. The biomass allocation to the roots showed a considerable plasticity but did not differ between the species. B. pinnatum had the highest leaf weight ratio. Root fineness was highly plastic in D. glomerata, the difference with B. pinnatum being mainly due to the thick roots of D. glomerata at high nutrient supply. The leaf area/leaf fresh weight ratio did not show any plasticity and was slightly higher for B. pinnatum. It is concluded, that the low density of the biomass of D. glomerata is the pivotal trait responsible for its faster growth at all nutrient levels. It enables simultaneously a good nutrient acquisition capacity by the roots as well as a superior carbon acquisition by the leaves. The high biomass density of B. pinnatum will then result in a lower nutrient requirement due to a slower turnover, which in the long term is advantageous under nutrient-poor conditions.  相似文献   

8.
The biomass production of wetland vegetation can be limited by nitrogen or phosphorus. Some species are most abundant in N-limited vegetation, and others in P-limited vegetation, possibly because growth-related traits of these species respond differently to N versus P supply. Two growth experiments were carried out to examine how various morphological and physiological traits respond to the relative supply of N and P, and whether species from sites with contrasting nutrient availability respond differently. In experiment 1, four Carex species were grown in nutrient solutions at five N:P supply ratios (1.7, 5, 15, 45, 135) combined with two levels of supply (geometric means of N and P supply). In experiment 2, two Carex and two grass species were grown in sand at the same .ve N:P supply ratios combined with three levels of supply and two light intensities (45% or 5% daylight). After 12-13 weeks of growth, plant biomass, allocation, leaf area, tissue nutrient concentrations and rates and nutrient uptake depended signi.cantly on the N:P supply ratio, but the type and strength of the responses differed among these traits. The P concentration and the N:P ratio of shoots and roots as well as the rates of N and P uptake were mainly determined by the N:P supply ratio; they showed little or no dependence on the supply level and relatively small interspeci.c variation. By contrast, the N concentration, root mass ratio, leaf dry matter content and speci.c leaf area were only weakly related to the N:P supply ratio; they mainly depended on plant species and light, and partly on overall nutrient supply. Plant biomass was determined by all factors together. Within a level of light and nutrient supply, biomass was generally maximal (i.e. co-limited by N and P) at a N:P supply ratio of 15 or 45. All species responded in a similar way to the N:P supply ratio. In particular, the grass species Phalaris arundinacea and Molinia caerulea showed no differences in response that could clearly explain why P. arundinacea tends to invade P-rich (N-limited) sites, and M. caerulea P-limited sites. This may be due to the short duration of the experiments, which investigated growth and nutrient acquisition but not nutrient con­servation.  相似文献   

9.
Light has been identified as one of the main factors affecting seaweed ecophysiology. We investigated the dependence of nutrient metabolism on sun and shade light conditions and whether episodes of upwelling of nutrient‐rich subsuperficial water could reduce the summer nutrient limitation driving physiological changes in Palmaria palmata (L.) Kuntze. We measured the major nutrient pools, photosynthetic pigments, and light curves, under sun and shade conditions during a summer period when one upwelling was recorded. The redundancy analysis (RDA) produced two clear groups: sun‐ and shade‐acclimated algae. Light was the major predictive factor. Sun‐acclimated algae exhibited higher carbon (C) and lower nitrogen (N) and phosphorus (P) content in association with the storage of floridoside (main C reserve) to benefit from higher irradiance (under nutrient limitation). Among N pools, N reserves (phycoerythrin, nitrate) were a lower proportion of the total N in sun‐acclimated algae, suggesting their degradation to fulfill the N demands of the cell. The orthophosphate content was also lower in sun‐acclimated algae, indicating its utilization as a nutrient reserve. In contrast, N within cell walls and membranes and chl a contributed to a similar proportion of the total N in sun‐ and shade‐acclimated algae, suggesting a response to sustain cell integrity. Transient high nutrient concentration due to the upwelling was unrelated to the nutrient content of the thallus. The storage of C as floridoside from high light exposure was shown to be the driving force for the metabolic adjustment of P. palmata at the end of summer before the onset of dormancy.  相似文献   

10.
Cell division patterns in Thalassiosira fluviatilis grown in a cyclostat were analyzed as a function of temperature, photoperiod, nutrient limitation and average cell size of the population. Typical cell division patterns in populations doubling more than once per day had multiple peaks in division rate each day, with the lowest rates always being greater than zero. Division bursts occurred in both light and dark periods with relative intensities depending on growth conditions. Multiple peaks in division rate were also found, when population growth rates were reduced to less than one doubling per day by lowering temperature, nutrients, or photoperiod and the degree of division phasing was not enhanced. Temperature and nutrient limitation shifted the timing of the major division burst relative to the light/dark cycle. Average cell volume of the inoculum was found to be a significant determinant of the average population growth rate and the timing and magnitude of the peaks in division rate. The results are interpreted in the context of a cell cycle model in which generation times are “quantized” into values separated by a constant time interval.  相似文献   

11.
Large swaths of the nutrient‐poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem‐specific selective pressures. The Red Sea is well‐suited for studying adaptation of pelagic‐microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high‐light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity‐dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter‐ecotype gene transfer is not a major source of environment‐specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.  相似文献   

12.
Blooms of the freshwater stalked diatom Didymosphenia geminata (Lyngb.) M. Schmidt in A. Schmidt typically occur in oligotrophic, unshaded streams and rivers. Observations that proliferations comprise primarily stalk material composed of extracellular polymeric substances (EPS) led us to ask whether or not the production of excessive EPS is favored under nutrient‐limited, high‐light conditions. We conducted experiments in outdoor flumes colonized by D. geminata using water from the oligotrophic, D. geminata–affected Waitaki River, South Island, New Zealand, to determine the relationship between D. geminata stalk length, cell division rates, and light intensity under ambient and nutrient‐enriched conditions. Stalk lengths were measured in situ, and cell division rates were estimated as the frequency of dividing cells (FDC). FDC responded positively to increasing light intensity and to nutrient additions (N+P and P). Under ambient conditions, stalk length increased as light level increased except at low ambient light levels and temperature. Nutrient enrichment resulted in decreased stalk length and negative correlations with FDC, with this effect most evident under high light. Our results are consistent with the hypothesis that extensive stalk production in D. geminata occurs when cell division rates are nutrient limited and light levels are high. Thus, photosynthetically driven EPS production in the form of stalks, under nutrient‐limited conditions, may explain the development of very high biomass in this species in oligotrophic rivers. The responses of FDC and stalk length under nutrient‐replete conditions are also consistent with occurrences of D. geminata as a nondominant component of mixed periphyton communities in high‐nutrient streams.  相似文献   

13.
Summary Growth of the broad-leaved graminoid Milium effusum, occurring in shady deciduous forests, was matched with periods of high light influx through the tree canopy in spring and autumn. Fertile shoots grew faster than sterile shoots. Leaves on flowering shoots were fully developed when the budbreak started on the trees, whereas nonflowering shoots had fully developed leaves when the tree canopy closed. Leaf concentrations of N and P were high (6.1 and 0.74% respectively) in spring but decreased as the leaves expanded. Maximum pool sizes of N and P in whole tillers were reached about one month after the onset of spring growth, whereas maximum spring pools of K, Mg, and Ca were timed with peak biomass about one month later. The leaves lost nutrients during summer when no growth took place. Since leaching losses were negligible, nutrients were probably allocated from the leaves to support root growth. Autumn reallocation to winter stores was low. The pattern of growth and nutrient use suggests that light availability, i.e., the resource in relatively lowest supply, regulates the investment of the resource in highest supply, i.e., nutrients. This is consistent with previously reported observations on Eriophorum vaginatum, a graminoid of low nutrient — high light environments. This species utilizes nutrients efficiently at the expense of less efficient acquisition of carbon. We suggest that selection for efficient utilization of the resource in lowest relative supply has been a strong driving force behind the physiological adaptation of both species to their environments.  相似文献   

14.
Leaf functional traits are widely used to detect and explain adaptations that enable plants to live under various environmental conditions. This study aims to determine the difference in leaf functional traits among four forest types of Pinus massoniana coniferous and broad‐leaved mixed forests by leaf morphological, nutrients, and stoichiometric traits in the subtropical mountain, Southeastern China. Our study indicated that the evergreen conifer species of P. massoniana had higher leaf dry matter content (LDMC), leaf C content, C/N and C/P ratios, while the three deciduous broad‐leaved species of L. formosana, Q. tissima, and P. strobilacea had higher specific leaf area (SLA), leaf N, leaf P nutrient contents, and N/P ratio in the three mixed forest types. The results showed that the species of P. massoniana has adapted to the nutrient‐poor environment by increasing their leaf dry matter for higher construction costs thereby reducing water loss and reflects a resource conservation strategy. In contrast, the three species of L. formosana, Q. tissima, and P. strobilacea exhibited an optimized resource acquisition strategy rather than resource conservation strategy in the subtropical mountain of southeastern China. Regarding the four forest types, the three mixed forest types displayed increased plant leaf nutrient contents when compared to the pure P. massoniana forest, especially the P. massonianaL. formosana mixed forest type (PLM). Overall, variation in leaf functional traits among different forest types may play an adaptive role in the successful survival of plants under diverse environments because leaf functional traits can lead to significant effects on leaf function, especially for their acquisition of nutrients and use of light. The results of this study are beneficial to reveal the changes in plant leaf functional traits at the regional scale, which will provide a foundation for predicting changes in leaf traits and adaptation in the future environment.  相似文献   

15.
Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition – C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity‐optimized nutrient acquisition model – the Fixation and Uptake of Nitrogen Model – into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N‐fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr?1 to acquire 1.0 Pg N yr?1, and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi – generally considered for their role in phosphorus (P) acquisition – are estimated to be the primary source of global plant N uptake owing to the dominance of AM‐associated plants in mid‐ and low‐latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2, and warming temperatures) may impact the land C sink.  相似文献   

16.
Cell division in most eukaryotic algae grown on alternating periods of light and dark (LD) is synchronized or phased so that cell division occurs only during a restricted portion of the LD cycle. However, the phase angle of the cell division gate, the time of division relative to the beginning of the light period, is known to be affected by growth conditions such as nutrient status and temperature. In this study, it is shown that the phase angle of cell division in a diatom, Cylindrotheca fusiformis Reimann and Lewin, is affected by the N-limited growth rate; cell division occurred later in the dark period (12:12 h LD cycle) when the growth rate was infradian (D = 0.42 d?1) than when it was ultradian (D = 1.0 d?1). Nitrogen-pulses did not affect the phase angle of the division gate, but could shift the time of peak cell division activity within the division gate. The effects, if any, of N-pulses were dependent upon the growth rate and the time of day that the pulses were administered. These responses indicate that the timing of cell division in this diatom is not determined solely by the zeitgeber from the LD cycle, but rather that a LD cycle control mechanism and a N-mediated control mechanism are both involved and are somewhat interdependent. In addition, an increase in protein was observed immediately after administering a N-pulse to C. fusiformis in the ultradian growth mode indicating that the accumulation of protein can be uncoupled from the cell division cycle.  相似文献   

17.
Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO2 is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by 14N/15N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in β–oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat.  相似文献   

18.
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M‐specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S‐phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy‐terminal region is responsible for proteasome‐mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S‐specific promoter of a histone 3.1‐type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M‐specific CYCB1GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time‐lapse imaging of cell cycle progression. The resultant dual‐color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development.  相似文献   

19.
M. Cui  M. M. Caldwell 《Oecologia》1997,109(2):177-183
 Shading may both lessen the demand for soil nutrients and also the energy supply for nutrient acquisition. Since root foraging for nutrients in patchy environments can be energy-costly, especially for an immobile nutrient such as phosphate (P), the effects of shading may be most expected in heterogeneous soils. Plant acquisition of nitrate (N) and phosphate from soils with patchy and uniform nutrient distributions was determined in a field study under open sunlight and with shading for two common perennial Great Basin shrub steppe species, Agropyron desertorum and Artemisia tridentata. Partial shading in a pattern which can occur in shrub steppe vegetation significantly decreased plant N and P acquisition from soils both in the patchy and the uniform nutrient treatments. Artemisia was more affected by the shading than was Agropyron. Exploitation of the rather immobile P ion by both species was reduced to a much greater degree by the shading in the patchy distribution treatment than in the uniform nutrient treatment. As expected, plant acquisition of the more mobile N varied little with nutrient distribution treatment for both species and the depression of N acquisition by shading was the same in both nutrient distributions. The effects of shading appeared to have had its primary influence on different components of root foraging in the two species, especially in the nutrient-rich patches. For Agropyron shading primarily affected root proliferation, as indicated by reduced root density in patches. For Artemisia, shading most influenced root physiological uptake capacity and this was most pronounced in the nutrient-rich patches. While aboveground competition for light may generally reduce nutrient acquisition, the effects appear to be most pronounced if root systems of these steppe species are foraging for nutrients such as P in spatially heterogeneous soils. Received: 29 February 1996 / Accepted: 16 July 1996  相似文献   

20.
光照和氮磷供应比对木荷生长及化学计量特征的影响   总被引:1,自引:0,他引:1  
熊静  虞木奎  成向荣  汪成  邹汉鲁 《生态学报》2021,41(6):2140-2150
光照和养分限制是影响林下植物生长和更新的关键影响因素,以亚热带主要常绿树种木荷(Schima superba)实生幼苗为试验对象,研究了不同光照(全光照、遮阴即45%全光照)和N、P供应比例(5,15,45)对幼苗生长和化学计量特征的影响。结果表明:(1)遮阴不仅严重抑制了木荷各器官和单株生物量积累,更加剧了P限制。尽管N、P添加对木荷生长没有显著促进作用,但N、P供应比例为5时的性状组合更有利于木荷后期生长,但高N、P供应比例可能导致P限制。(2)遮阴下叶N、P含量显著增加,但叶C/N和C/P比显著降低;不同光照处理组中各器官及总N含量均随N、P供应比例增大而显著增加,而C/N比逐渐降低;P的分配格局发生改变,全光照组各器官P含量为茎 > 叶 > 根,遮阴组各器官P含量为根 > 茎 > 叶。(3)随N、P供应比例增加或光照强度降低,木荷均趋向降低根冠比和根质比、增加叶质比或茎质比。(4)木荷生物量与各器官N、P含量、叶质比呈极显著负相关,而与C/N和C/P比及根冠比、茎质比、根质比呈极显著正相关。光强和N、P比例变化均显著影响了木荷幼苗的养分利用特征,因而木荷作为伴生树种优化林分环境对其早期生长具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号