首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lack of a cell wall, flagella, fimbria, and other extracellular appendages and the possession of only a single membrane render the mycoplasmas structurally simplistic and ideal model organisms for the study of glycoconjugates. Most species have genomes of about 800 kb and code for few proteins predicted to have a role in glycobiology. The murine pathogens Mycoplasma arthritidis and Mycoplasma pulmonis have only a single gene annotated as coding for a glycosyltransferase but synthesize glycolipid, polysaccharide and glycoproteins. Previously, it was shown that M. arthritidis glycosylated surface lipoproteins through O-linkage. In the current study, O-linked glycoproteins were similarly found in M. pulmonis and both species of mycoplasma were found to also possess N-linked glycans at residues of asparagine and glutamine. Protein glycosylation occurred at numerous sites on surface-exposed lipoproteins with no apparent amino acid sequence specificity. The lipoproteins of Mycoplasma pneumoniae also are glycosylated. Glycosylation was dependent on the glycosidic linkages from host oligosaccharides. As far as we are aware, N-linked glycoproteins have not been previously described in Gram-positive bacteria, the organisms to which the mycoplasmas are phylogenetically related. The findings indicate that the mycoplasma cell surface is heavily glycosylated with implications for the modulation of mycoplasma-host interactions.  相似文献   

2.
Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc‐type O‐glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc‐transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O‐glycosylation (SimpleCells) that enables proteome‐wide discovery of O‐glycan sites using ‘bottom‐up’ ETD‐based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O‐glycoproteome with almost 3000 glycosites in over 600 O‐glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O‐glycosylation. The finding of unique subsets of O‐glycoproteins in each cell line provides evidence that the O‐glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O‐glycoproteome should facilitate the exploration of how site‐specific O‐glycosylation regulates protein function.  相似文献   

3.
Glycosylation of proteins has been implicated in various biological functions and has received much attention; however, glycoprotein components and inter‐species complexity have not yet been elucidated fully in milk proteins. N‐linked glycosylation sites and glycoproteins in milk fat globule membrane (MFGM) fractions were investigated by combining N‐glycosylated peptides enrichment and high‐accuracy Q Exactive identification, to map the N‐glycoproteome profiles in Holstein and Jersey cows, buffaloes, yaks, goats, camels, horses, and humans. A total of 399 N‐glycoproteins with 677 glycosylation sites were identified in the MFGM fractions of the studied mammals. Most glycosylation sites in humans were classified as known and those in the other studied mammals as unknown, according to Swiss‐Prot annotations. Functionally, most of the identified glycoproteins were associated with the ‘response to stimulus’ GO category. N‐glycosylated protein components of MFGM fractions from Holstein and Jersey cows, buffaloes, yaks, and goats were more similar to each other compared with those of camels, horses and human. The findings increased the number of known N‐glycosylation sites in the milk from dairy animal species, revealed the complexity of the MFGM glycoproteome, and provided useful information to further explore the mechanism of MFGM glycoproteins biosynthesis among the studied mammals.  相似文献   

4.
5.
Multi‐drug resistant strains of Acinetobacter baumannii are increasingly being isolated in hospitals worldwide. Among the virulence factors identified in this bacterium there is a general O‐glycosylation system that appears to be important for biofilm formation and virulence, and the capsular polysaccharide, which is essential for resistance to complement killing. In this work, we identified a locus that is responsible for the synthesis of the O‐pentasaccharide found on the glycoproteins. Besides the enzymes required for the assembly of the glycan, additional proteins typically involved in polymerization and transport of capsule were identified within or adjacently to the locus. Mutagenesis of PglC, the initiating glycosyltransferase prevented the synthesis of both glycoproteins and capsule, resulting in abnormal biofilm structures and attenuated virulence in mice. These results, together with the structural analysis of A. baumannii 17978 capsular polysaccharide via NMR, demonstrated that the pentasaccharides that decorate the glycoproteins are also the building blocks for capsule biosynthesis. Two linked subunits, but not longer glycan chains, were detected on proteins via MS. The discovery of a bifurcated pathway for O‐glycosylation and capsule synthesis not only provides insight into the biology of A. baumannii but also identifies potential novel candidates for intervention against this emerging pathogen.  相似文献   

6.
The Brassica rapa hairy root based expression platform, a turnip hairy root based expression system, is able to produce human complex glycoproteins such as the alpha—L—iduronidase (IDUA) with an activity similar to the one produced by Chinese Hamster Ovary (CHO) cells. In this article, a particular attention has been paid to the N‐ and O‐glycosylation that characterize the alpha‐L‐iduronidase produced using this hairy root based system. This analysis showed that the recombinant protein is characterized by highly homogeneous post translational profiles enabling a strong batch to batch reproducibility. Indeed, on each of the 6 N‐glycosylation sites of the IDUA, a single N‐glycan composed of a core Man3GlcNAc2 carrying one beta(1,2)‐xylose and one alpha(1,3)‐fucose epitope (M3XFGN2) was identified, highlighting the high homogeneity of the production system. Hydroxylation of proline residues and arabinosylation were identified during O‐glycosylation analysis, still with a remarkable reproducibility. This platform is thus positioned as an effective and consistent expression system for the production of human complex therapeutic proteins.  相似文献   

7.
As one of the most important post‐translational modifications, the discovery, isolation, and identification of glycoproteins are becoming increasingly important. In this study, a Con A‐magnetic particle conjugate‐based method was utilized to selectively isolate the glycoproteins and their glycomes from the healthy donor and hepatocellular carcinoma (HCC) case sera. The isolated glycoproteins and their N‐linked glycans were identified by LC‐ESI‐MS/MS and MALDI‐TOF/TOF‐MS, respectively. A total of 93 glycoproteins from the healthy donors and 85 glycoproteins from the HCC cases were identified. There were 34 different glycoproteins shown between the healthy donors (21/34) and the HCC cases (13/34). Twenty‐eight glycans from the healthy donors and 30 glycans from the HCC cases were detected and there were 22 different glycans shown between the healthy donors (10/22) and HCC cases (12/22). Among these glycoproteins, 50 were known to be N‐linked glycoproteins and three novel glycopeptides from two predicted potential glycoproteins were discovered. Moreover, lectin blotting, Western blotting and lectin/glyco‐antibody microarrays were applied to definitely elucidate the change of selective protein expressions and their glycosylation levels, the results indicated that the differences of the identified glycoproteins between the healthy donors and HCC cases were caused by the change of both protein expression and their glycosylation levels.  相似文献   

8.
Human sex hormone binding globulin (hSHBG) is a serum glycoprotein central to the transport and targeted delivery of sex hormones to steroid‐sensitive tissues. Several molecular mechanisms of action of hSHBG, including the function of its attached glycans remain unknown. Here, we perform a detailed site‐specific characterization of the N‐ and O‐linked glycosylation of serum‐derived hSHBG. MS‐driven glycoproteomics and glycomics combined with exoglycosidase treatment were used in a bottom‐up and top‐down manner to determine glycosylation sites, site‐specific occupancies and monosaccharide compositions, detailed glycan structures, and the higher level arrangement of glycans on intact hSHBG. It was found that serum‐derived hSHBG is N‐glycosylated at Asn351 and Asn367 with average molar occupancies of 85.1 and 95.3%, respectively. Both sites are occupied by the same six sialylated and partly core fucosylated bi‐ and triantennary N‐Glycoforms with lactosamine‐type antennas of the form (±NeuAcα6)Galβ4GlcNAc. N‐Glycoforms of Asn367 were slightly more branched and core fucosylated than Asn351 N‐glycoforms due probably to a more surface‐exposed glycosylation site. The N‐terminal Thr7 was fully occupied by the two O‐linked glycans NeuAcα3Galβ3(NeuAcα6)GalNAc (where NeuAc is N‐acetylneuraminic acid and GalNAc is N‐acetylgalactosamine) and NeuAcα3Galβ3GalNAc in a 1:6 molar ratio. Electrophoretic analysis of intact hSHBG revealed size and charge heterogeneity of the isoforms circulating in blood serum. Interestingly, the size and charge heterogeneity were shown to originate predominantly from differential Asn351 glycan occupancies and N‐glycan sialylation that may modulate the hSHBG activity. To date, this work represents the most detailed structural map of the heterogeneous hSHBG glycosylation, which is a prerequisite for investigating the functional aspects of the hSHBG glycans.  相似文献   

9.
While protein glycosylation has been reported in several spirochetes including the syphilis bacterium Treponema pallidum and Lyme disease pathogen Borrelia burgdorferi, the pertinent glycan structures and their roles remain uncharacterized. Herein, a novel glycan with an unusual chemical composition and structure in the oral spirochete Treponema denticola, a keystone pathogen of periodontitis was reported. The identified glycan of mass 450.2 Da is composed of a monoacetylated nonulosonic acid (Non) with a novel extended N7 acyl modification, a 2‐methoxy‐4,5,6‐trihydroxy‐hexanoyl residue in which the Non has a pseudaminic acid configuration (L‐glycero‐L‐manno) and is β ‐linked to serine or threonine residues. This novel glycan modifies the flagellin proteins (FlaBs) of T. denticola by O‐linkage at multiple sites near the D1 domain, a highly conserved region of bacterial flagellins that interact with Toll‐like receptor 5. Furthermore, mutagenesis studies demonstrate that the glycosylation plays an essential role in the flagellar assembly and motility of T. denticola. To our knowledge, this novel glycan and its unique modification sites have not been reported previously in any bacteria.  相似文献   

10.
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O‐linked protein glycosylation system in B. cenocepacia K56‐2. The PglLBc O‐oligosaccharyltransferase (O‐OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N‐glycosylation system to a Neisseria meningitides‐derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56‐2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc‐HexNAc‐Hex, which is unrelated to the O‐antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post‐translational modification in Bcc with implications for pathogenesis.  相似文献   

11.
Influenza H1N1 virus has posed a serious threat to human health. The glycosylation of neuraminidase (NA) could affect the infectivity and virulence of the influenza virus, but detailed site‐specific glycosylation information of NA is still missing. In this study, intact glycopeptide analysis is performed on an influenza NA (A/H1N1/California/2009) that is expressed in human 293T and insect Hi‐5 cells. The data indicate that three of four potential N‐linked glycosylation sites are glycosylated, including one partial glycosylation site from both cell lines. The NA expressed in human cells has more complex glycans than that of insect cells, suggesting the importance of selecting an appropriate expression system for the production of functional glycoproteins. Different types of glycans are identified from different glycosites of NA expressed in human cells, which implies the site‐dependence of glycosylation on NA. This study provides valuable information for the research of influenza virus as well as the functions of viral protein glycosylation.  相似文献   

12.
Summary The pathogenesis of the intra-articular, arthritic-inflammatory reaction caused byMycoplasma arthritidis in susceptible rats and mice is poorly understood. To investigate this problem, synovial cells from normal Sprague-Dawley rats were cultured and studied in vitro. These cells continued to produce hyaluronic acid as measured by viscosity and chemical assays. Normal synovial cells were treated with rabbit serum specimens taken before and after immunization withM. arthritidis. Cytotoxicity assays indicated that the cells were killed in the presence of rabbit anti-M. arthritidis serum but not with preimmunization serum specimens. The anti-M. arthritidis serum was not cytotoxic to monolayer cultures of HEp-2, Vero, or L-cells. Antiserum produced in response toM. fermentans, M. hominis, andM. pulmonis did not produce a cytotoxic effect on the cultured synovial cells. From immunofluorescence studies it was demonstrated that the interactions occurred between the rabbit anti-M. arthritidis serum and synovial cell surface antigens. Extreme precautions were taken to prevent mycoplasmal contamination of rats and the synovial cells in culture. These observations would appear to support previous reports implicating mycoplasmas as biological triggering mechanisms of autoimmune reactions. This research was supported in part by funds from the National Science Foundation, Grant DPP72-05787, and the U.S. Veterans Administration.  相似文献   

13.
N‐linked glycosylation is of key importance for the efficacy of many biotherapeutic proteins such as monoclonal antibodies (mAbs). Media components and cell culture conditions have been shown to significantly affect N‐linked glycosylation during the production of glycoproteins using mammalian cell fed‐batch cultures. These parameters inevitably change in modern industrial processes with concentrated feed additions and cell densities beyond 2 × 107 cells/mL. In order to control the time‐dependent changes of protein glycosylation, an automated microbioreactor system was used to investigate the effects of culture pH, ammonia, galactose, and manganese chloride supplementation on nucleotide sugars as well as mAb N‐linked glycosylation in a time‐dependent way. Two different strategies comprising of a single shift of culture conditions as well as multiple media supplementations along the culture duration were applied to obtain changing and constant glycosylation profiles. The different feeding approaches enabled constant glycosylation patterns throughout the entire culture duration at different levels. By modulating the time evolution of the mAb glycan pattern, not only the endpoint but also the ratios between different glycosylation structures could be modified. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1123–1134, 2016  相似文献   

14.
Asparagine‐linked glycosylation is a common post‐translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site‐specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH‐MS to enable automated measurement of site‐specific occupancy at many glycosylation sites. Deglycosylation with peptide‐endoglycosidase H, leaving a remnant N‐acetylglucosamine on asparagines previously carrying high‐mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide‐N‐glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site‐specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site‐specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.  相似文献   

15.
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017  相似文献   

16.
17.
O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) is a widespread modification of serine/threonine residues of nucleocytoplasmic proteins. Recently, several key contractile proteins in rat skeletal muscle (i.e., myosin heavy and light chains and actin) were identified as O‐GlcNAc modified. Moreover, it was demonstrated that O‐GlcNAc moieties involved in contractile protein interactions could modulate Ca2+ activation parameters of contraction. In order to better understand how O‐GlcNAc can modulate the contractile activity of muscle fibers, we decided to identify the sites of O‐GlcNAc modification in purified contractile protein homogenates. Using an MS‐based method that relies on mild β‐elimination followed by Michael addition of DTT (BEMAD), we determined the localization of one O‐GlcNAc site in the subdomain four of actin and four O‐GlcNAc sites in the light meromyosin region of myosin heavy chains (MHC). According to previous reports concerning the role of these regions, our data suggest that O‐GlcNAc sites might modulate the actin–tropomyosin interaction, and be involved in MHC polymerization or interactions between MHC and other contractile proteins. Thus, the results suggest that this PTM might be involved in protein–protein interactions but could also modulate the contractile properties of skeletal muscle.  相似文献   

18.
In an attempt to develop a high producing mammalian cell line expressing CNTO736, a Glucagon like peptide‐1‐antibody fusion protein (also known as a Glucagon like peptide‐1 MIMETIBODYTM), we have noted that the N‐terminal GLP‐1 portion of the MIMETIBODYTM was susceptible to proteolytic degradation during cell culture, which resulted in an inactive product. Therefore, a number of parameters that had an effect on productivity as well as product quality were examined. Results suggest that the choice of the host cell line had a significant effect on the overall product quality. Product expressed in mouse myeloma host cell lines had a lesser degree of proteolytic degradation and variability in O‐linked glycosylation as compared to that expressed in CHO host cell lines. The choice of a specific CHOK1SV derived clone also had an effect on the product quality. In general, molecules that exhibited minimal N‐terminal clipping had increased level of O‐linked glycosylation in the linker region, giving credence to the hypothesis that O‐linked glycosylation acts to protect against proteolytic degradation. Moreover, products with reduced potential for N‐terminal clipping had longer in vivo serum half‐life. These findings suggest that early monitoring of product quality should be an essential part of production cell line development and therefore, has been incorporated in our process of cell line development for this class of molecules. Biotechnol. Bioeng. 2009;103: 162–176. © 2008 Wiley Periodicals, Inc.  相似文献   

19.
Arabinogalactan proteins (AGPs) are plant‐specific extracellular glycoproteins implicated in a variety of processes during growth and development. AGP biosynthesis involves O‐galactosylation of hydroxyproline (Hyp) residues followed by a stepwise elongation of the complex sugar chains. However, functionally dominant Hyp O‐galactosyltransferases, such that their disruption produces phenocopies of AGP‐deficient mutants, remain to be identified. Here, we purified and identified three potent Hyp O‐galactosyltransferases, HPGT1, HPGT2 and HPGT3, from Arabidopsis microsomal fractions. Loss‐of‐function analysis indicated that approximately 90% of the endogenous Hyp O‐galactosylation activity is attributable to these three enzymes. AGP14 expressed in the triple mutant migrated much faster on SDS‐PAGE than when expressed in wild‐type, confirming a considerable decrease in levels of glycosylation of AGPs in the mutant. Loss‐of‐function mutant plants exhibited a pleiotropic phenotype of longer lateral roots, longer root hairs, radial expansion of the cells in the root tip, small leaves, shorter inflorescence stems, reduced fertility and shorter siliques. Our findings provide genetic evidence that Hyp‐linked arabinogalactan polysaccharide chains are critical for AGP function and clues to how arabinogalactan moieties of AGPs contribute to cell‐to‐cell communication during plant growth and development.  相似文献   

20.
N‐glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central‐protein complex facilitating the N‐glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N‐glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single‐subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well‐established production platform for recombinant proteins. A fluorescent protein‐tagged LmSTT3D variant was predominately found in the ER and co‐located with plant oligosaccharyltransferase subunits. Co‐expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N‐glycosylation site occupancy on all N‐glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N‐glycosylation efficiency in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号