首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Striatin-interacting phosphatases and kinases (STRIPAKs) are evolutionarily conserved supramolecular complexes that control various important cellular processes such as signal transduction and development. However, the role of the STRIPAK complex in pathogenic fungi remains elusive. In this study, the components and function of the STRIPAK complex were investigated in Fusarium graminearum, an important plant-pathogenic fungus. The results obtained from bioinformatic analyses and the protein–protein interactome suggested that the fungal STRIPAK complex consisted of six proteins: Ham2, Ham3, Ham4, PP2Aa, Ppg1, and Mob3. Deletion mutations of individual components of the STRIPAK complex were created, and observed to cause a significant reduction in fungal vegetative growth and sexual development, and dramatically attenuae virulence, excluding the essential gene PP2Aa. Further results revealed that the STRIPAK complex interacted with the mitogen-activated protein kinase Mgv1, a key component in the cell wall integrity pathway, subsequently regulating the phosphorylation level and nuclear accumulation of Mgv1 to control the fungal stress response and virulence. Our results also suggested that the STRIPAK complex was interconnected with the target of rapamycin pathway through Tap42-PP2A cascade. Taken together, our findings revealed that the STRIPAK complex orchestrates cell wall integrity signalling to govern the fungal development and virulence of F. graminearum and highlighted the importance of the STRIPAK complex in fungal virulence.  相似文献   

2.
Herein, we report that insulin‐activated extracellular signal‐regulated kinase (ERK) is translocated to the nuclear envelope by caveolin‐2 (cav‐2) and associates with lamin A/C in the inner nuclear membrane in response to insulin. We identified that the Ser154–Val155–Ser156 domain on the C‐terminal of cav‐2 is essential for insulin‐induced phosphorylation and nuclear targeting of ERK and cav‐2. In human embryonic kidney 293T cells, ERK was not activated and translocated to the nucleus by insulin in comparison to insulin‐like growth factor‐1 (IGF‐1). However, insulin‐stimulated activation of ERK was induced by exogenous addition of cav‐2. The activated ERK associated and translocated with the cav‐2 to the nucleus. In turn, cav‐2 promoted phospho‐ERK interaction with lamin A/C in the inner nuclear membrane. In contrast, ERK, but not cav‐2, was phosphorylated and translocated to the nucleus by IGF‐1. The nuclear targeted phospho‐ERK failed to localize in the nuclear envelope in response to IGF‐1. Together, our data demonstrate that translocation of phospho‐ERK to the nuclear envelope is mediated by Ser154–Val155–Ser156 domain of cav‐2 and this event is an insulin‐specific action.  相似文献   

3.
Fsr1, a homologue of mammalian striatin, containing multiple protein‐binding domains and a coiled‐coil (CC) domain, is critical for Fusarium verticillioides virulence. In mammals, striatin interacts with multiple proteins to form a STRIPAK (striatin‐interacting phosphatase and kinase) complex that regulates a variety of developmental processes and cellular mechanisms. In this study, we identified the homologue of a key mammalian STRIPAK component STRIP1/2 (striatin‐interacting proteins 1 and 2) in F. verticillioides, FvStp1, which interacts with Fsr1 in vivo. Gene deletion analysis indicates that FvStp1 is critical for F. verticillioides stalk rot virulence. In addition, we identified three proteins, designated FvCyp1, FvScp1 and FvSel1, which interact with the Fsr1 CC domain via a yeast two‐hybrid screen. Importantly, FvCyp1, FvScp1 and FvSel1 co‐localize to endomembrane structures, each having a preferred localization in the cell, and they are all required for F. verticillioides stalk rot virulence. Moreover, these proteins are necessary for the correct localization of Fsr1 to the endoplasmic reticulum (ER) and nuclear envelope. Thus, we identified several novel components in the STRIPAK complex that regulates F. verticillioides virulence, and propose that the correct organization and localization of Fsr1 are critical for STRIPAK complex function.  相似文献   

4.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

5.
6.
Nuclear Dbf2p-related (NDR) kinases and associated proteins are recognized as a conserved network that regulates eukaryotic cell polarity. NDR kinases require association with MOB adaptor proteins and phosphorylation of two conserved residues in the activation segment and hydrophobic motif for activity and function. We demonstrate that the Neurospora crassa NDR kinase COT1 forms inactive dimers via a conserved N-terminal extension, which is also required for the interaction of the kinase with MOB2 to generate heterocomplexes with basal activity. Basal kinase activity also requires autophosphorylation of the COT1-MOB2 complex in the activation segment, while hydrophobic motif phosphorylation of COT1 by the germinal center kinase POD6 fully activates COT1 through induction of a conformational change. Hydrophobic motif phosphorylation is also required for plasma membrane association of the COT1-MOB2 complex. MOB2 further restricts the membrane-associated kinase complex to the hyphal apex to promote polar cell growth. These data support an integrated mechanism of NDR kinase regulation in vivo, in which kinase activation and cellular localization of COT1 are coordinated by dual phosphorylation and interaction with MOB2.  相似文献   

7.
The str iatin i nteracting p hosphatase a nd k inase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting‐body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the g lycosylp hosphatidyli nositol (GPI)‐anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two‐hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co‐immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual‐targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal‐fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility.  相似文献   

8.
The protein phosphatase 2A (PP2A) and kinases such as germinal center kinase III (GCKIII) can interact with striatins to form a supramolecular complex called striatin-interacting phosphatase and kinase (STRIPAK) complex. Despite the fact that the STRIPAK complex regulates multiple cellular events, it remains only partially understood how this complex itself is assembled and regulated for differential biological functions. Our recent work revealed the activation mechanism of GCKIIIs by MO25, as well as how GCKIIIs heterodimerize with CCM3, a molecular bridge between GCKIII and striatins. Here we dissect the structural features of the coiled coil domain of striatin 3, a novel type of PP2A regulatory subunit that functions as a scaffold for the assembly of the STRIPAK complex. We have determined the crystal structure of a selenomethionine-labeled striatin 3 coiled coil domain, which shows it to assume a parallel dimeric but asymmetric conformation containing a large bend. This result combined with a number of biophysical analyses provide evidence that the coiled coil domain of striatin 3 and the PP2A A subunit form a stable core complex with a 2:2 stoichiometry. Structure-based mutational studies reveal that homodimerization of striatin 3 is essential for its interaction with PP2A and therefore assembly of the STRIPAK complex. Wild-type striatin 3 but not the mutants defective in PP2A binding strongly suppresses apoptosis of Jurkat cells induced by the GCKIII kinase MST3, most likely through a mechanism in which striatin recruits PP2A to negatively regulate the activation of MST3. Collectively, our work provides structural insights into the organization of the STRIPAK complex and will facilitate further functional studies.  相似文献   

9.
Nuclear Dbf2p‐related (NDR) protein kinases are important for cell differentiation and polar morphogenesis in various organisms, yet some of their functions are still elusive. Dysfunction of the Neurospora crassa NDR kinase COT1 leads to cessation of tip extension and hyperbranching. NDR kinases require the physical interaction between the kinase's N‐terminal region (NTR) and the MPS1‐binding (MOB) proteins for their activity and functions. To study the interactions between COT1 and MOB2 proteins, we mutated several conserved residues and a novel phosphorylation site within the COT1 NTR. The phenotypes of these mutants suggest that the NTR is required for COT1 functions in regulating hyphal elongation and branching, asexual conidiation and germination. Interestingly, while both MOB2A and MOB2B promote proper hyphal growth, they have distinct COT1‐dependent roles in regulation of macroconidiation. Immunoprecipitation experiments indicate physical association of COT1 with both MOB2A and MOB2B, simultaneously. Furthermore, the binding of the two MOB2 proteins to COT1 is mediated by different residues at the COT1 NTR, suggesting a hetero‐trimer is formed. Thus, although MOB2A/B may have some overlapping functions in regulating hyphal tip extension, their function is not redundant and they are both required for proper fungal development.  相似文献   

10.
Striatin and S/G(2) nuclear autoantigen (SG2NA) are related proteins that contain membrane binding domains and associate with protein phosphatase 2A (PP2A) and many additional proteins that may be PP2A regulatory targets. Here we identify a major member of these complexes as class II mMOB1, a mammalian homolog of the yeast protein MOB1, and show that its phosphorylation appears to be regulated by PP2A. Yeast MOB1 is critical for cytoskeletal reorganization during cytokinesis and exit from mitosis. We show that mMOB1 associated with PP2A is not detectably phosphorylated in asynchronous murine fibroblasts. However, treatment with the PP2A inhibitor okadaic acid induces phosphorylation of PP2A-associated mMOB1 on serine. Moreover, specific inhibition of PP2A also results in hyperphosphorylation of striatin, SG2NA, and three unidentified proteins, suggesting that these proteins may also be regulated by PP2A. Indirect immunofluorescence produced highly similar staining patterns for striatin, SG2NA, and mMOB1, with the highest concentrations for each protein adjacent to the nuclear membrane. We also present evidence that these complexes may interact with each other. These data are consistent with a model in which PP2A may regulate mMOB1, striatin, and SG2NA to modulate changes in the cytoskeleton or interactions between the cytoskeleton and membrane structures.  相似文献   

11.
Entry into mitosis requires the phosphorylation of multiple substrates by cyclin B-Cdk1, while exit from mitosis requires their dephosphorylation, which depends largely on the phosphatase PP2A in complex with its B55 regulatory subunit (Tws in Drosophila). At mitotic entry, cyclin B-Cdk1 activates the Greatwall kinase, which phosphorylates Endosulfine proteins, thereby activating their ability to inhibit PP2A-B55 competitively. The inhibition of PP2A-B55 at mitotic entry facilitates the accumulation of phosphorylated Cdk1 substrates. The coordination of these enzymes involves major changes in their localization. In interphase, Gwl is nuclear while PP2A-B55 is cytoplasmic. We recently showed that Gwl suddenly relocalizes from the nucleus to the cytoplasm in prophase, before nuclear envelope breakdown and that this controlled localization of Gwl is required for its function. We and others have shown that phosphorylation of Gwl by cyclin B-Cdk1 at multiple sites is required for its nuclear exclusion, but the precise mechanisms remained unclear. In addition, how Gwl returns to its nuclear localization was not explored. Here we show that cyclin B-Cdk1 directly inactivates a Nuclear Localization Signal in the central region of Gwl. This phosphorylation facilitates the cytoplasmic retention of Gwl, which is exported to the cytoplasm in a Crm1-dependent manner. In addition, we show that PP2A-Tws promotes the return of Gwl to its nuclear localization during cytokinesis. Our results indicate that the cyclic changes in Gwl localization at mitotic entry and exit are directly regulated by the antagonistic cyclin B-Cdk1 and PP2A-Tws enzymes.  相似文献   

12.
Pracheil T  Thornton J  Liu Z 《Genetics》2012,190(4):1325-1339
The target of rapamycin (TOR) kinase, a central regulator of eukaryotic cell growth, exists in two essential, yet distinct, TOR kinase complexes in the budding yeast Saccharomyces cerevisiae: rapamycin-sensitive TORC1 and rapamycin-insensitive TORC2. Lst8, a component of both TOR complexes, is essential for cell viability. However, it is unclear whether the essential function of Lst8 is linked to TORC1, TORC2, or both. To that end, we carried out a genetic screen to isolate lst8 deletion suppressor mutants. Here we report that mutations in SAC7 and FAR11 suppress lethality of lst8Δ and TORC2-deficient (tor2-21) mutations but not TORC1 inactivation, suggesting that the essential function of Lst8 is linked only to TORC2. More importantly, characterization of lst8Δ bypass mutants reveals a role for protein phosphatase 2A (PP2A) in the regulation of TORC2 signaling. We show that Far11, a member of the Far3-7-8-9-10-11 complex involved in pheromone-induced cell cycle arrest, interacts with Tpd3 and Pph21, conserved components of PP2A, and deletions of components of the Far3-7-8-9-10-11 complex and PP2A rescue growth defects in lst8Δ and tor2-21 mutants. In addition, loss of the regulatory B' subunit of PP2A Rts1 or Far11 restores phosphorylation to the TORC2 substrate Slm1 in a tor2-21 mutant. Mammalian Far11 orthologs FAM40A/B exist in a complex with PP2A known as STRIPAK, suggesting a conserved functional association of PP2A and Far11. Antagonism of TORC2 signaling by PP2A-Far11 represents a novel regulatory mechanism for controlling spatial cell growth of yeast.  相似文献   

13.
One of the mechanisms by which all‐trans retinoic acid (ATRA) has been shown to suppress the growth of CAOV3 ovarian carcinoma cells involves an increase in the accumulation of Rb2/p130 protein, a member of the retinoblastoma family of tumor suppressors. This increase in accumulation of RB2/p130 by ATRA results from increased stability of Rb2/p130 protein as a result of an increase in dephosphorylation of the protein by the serine/threonine phosphatase PP2A. We show that upon ATRA treatment, PP2A interacts with the Rb2/p130 C‐terminus and specifically dephosphorylates two residues (S1080 and T1097) adjacent to NLS1 and NLS2 of Rb2/p130. Moreover, co‐immunoprecipitation studies reveal that Rb2/p130 can form a complex with the nuclear transport proteins, importin α and importin β, binding to the same dephosphorylated NLS1 and NLS2 sites. Finally, mutation of S1080 and T1097 results in retension of Rb2/p130 in the cytoplasm. Our studies suggest that one mechanism by which ATRA treatment of CAOV3 cells induces G0/G1 arrest involves the recruitment of PP2A to the C‐terminus of Rb2/p130, resulting in the dephosphorylation of the S1080 and T1097 adjacent to the NLS and the subsequent interaction of Rb2/p130 with importins leading to transport of the Rb2/p130 to the nucleus where it inhibits cell‐cycle progression. J. Cell. Physiol. 226: 1027–1034, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.  相似文献   

15.
γ‐Bisabolene, one of main components in cardamom, showed potent in vitro and in vivo anti‐proliferative activities against human oral squamous cell carcinoma (OSCC). γ‐Bisabolene activated caspases‐3/9 and decreased mitochondrial memebrane potential, leading to apoptosis of OSCC cell lines (Ca9‐22 and SAS), but not normal oral fibroblast cells. Phosphoproteome profiling of OSCC cells treated with γ‐bisabolene was identified using TiO2‐PDMS plate and LC‐MS/MS, then confirmed using Western blotting and real‐time RT‐PCR assays. Phosphoproteome profiling revealed that γ‐bisabolene increased the phosphorylation of ERK1/2, protein phosphatases 1 (PP1), and p53, as well as decreased the phosphorylation of histone deacetylase 2 (HDAC2) in the process of apoptosis induction. Protein–protein interaction network analysis proposed the involvement of PP1‐HDAC2‐p53 and ERK1/2‐p53 pathways in γ‐bisabolene‐induced apoptosis. Subsequent assays indicated γ‐bisabolene eliciting p53 acetylation that enhanced the expression of p53‐regulated apoptotic genes. PP1 inhibitor‐2 restored the status of HDAC2 phosphorylation, reducing p53 acetylation and PUMA mRNA expression in γ‐bisabolene‐treated Ca9‐22 and SAS cells. Meanwhile, MEK and ERK inhibitors significantly decreased γ‐bisabolene‐induced PUMA expression in both cancer cell lines. Notably, the results ascertained the involvement of PP1‐HDAC2‐p53 and ERK1/2‐p53 pathways in mitochondria‐mediated apoptosis of γ‐bisabolene‐treated cells. This study demonstrated γ‐bisabolene displaying potent anti‐proliferative and apoptosis‐inducing activities against OSCC in vitro and in vivo, elucidating molecular mechanisms of γ‐bisabolene‐induced apoptosis. The novel insight could be useful for developing anti‐cancer drugs.  相似文献   

16.
Maerz S  Ziv C  Vogt N  Helmstaedt K  Cohen N  Gorovits R  Yarden O  Seiler S 《Genetics》2008,179(3):1313-1325
Ndr kinases, such as Neurospora crassa COT1, are important for cell differentiation and polar morphogenesis, yet their input signals as well as their integration into a cellular signaling context are still elusive. Here, we identify the cot-1 suppressor gul-4 as mak-2 and show that mutants of the gul-4/mak-2 mitogen-activated protein (MAP) kinase pathway suppress cot-1 phenotypes along with a concomitant reduction in protein kinase A (PKA) activity. Furthermore, mak-2 pathway defects are partially overcome in a cot-1 background and are associated with increased MAK1 MAPK signaling. A comparative characterization of N. crassa MAPKs revealed that they act as three distinct modules during vegetative growth and asexual development. In addition, common functions of MAK1 and MAK2 signaling during maintenance of cell-wall integrity distinguished the two ERK-type pathways from the p38-type OS2 osmosensing pathway. In contrast to separate functions during vegetative growth, the concerted activity of the three MAPK pathways is essential for cell fusion and for the subsequent formation of multicellular structures that are required for sexual development. Taken together, our data indicate a functional link between COT1 and MAPK signaling in regulating filamentous growth, hyphal fusion, and sexual development.  相似文献   

17.
Muscle fiber degeneration in sporadic inclusion‐body myositis (s‐IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid‐β (Aβ)‐precursor protein 751 (AβPP751), Aβ, phosphorylated tau, and other ‘Alzheimer‐characteristic’ proteins. Proteasome inhibition is an important component of the s‐IBM pathogenesis. In brains of Alzheimer’s disease (AD) patients and AD transgenic‐mouse models, phosphorylation of neuronal AβPP695 (p‐AβPP) on Thr668 (equivalent to T724 of AβPP751) is considered detrimental because it increases generation of cytotoxic Aβ and induces tau phosphorylation. Activated glycogen synthase kinase3β (GSK3β) is involved in phosphorylation of both AβPP and tau. Lithium, an inhibitor of GSK3β, was reported to reduce levels of both the total AβPP and p‐AβPP in AD animal models. In relation to s‐IBM, we now show for the first time that (1) In AβPP‐overexpressing cultured human muscle fibers (human muscle culture IBM model: (a) proteasome inhibition significantly increases GSK3β activity and AβPP phosphorylation, (b) treatment with lithium decreases (i) phosphorylated‐AβPP, (ii) total amount of AβPP, (iii) Aβ oligomers, and (iv) GSK3β activity; and (c) lithium improves proteasome function. (2) In biopsied s‐IBM muscle fibers, GSK3β is significantly activated and AβPP is phosphorylated on Thr724. Accordingly, treatment with lithium, or other GSK3β inhibitors, might benefit s‐IBM patients.  相似文献   

18.
Intraneuronal accumulation of wild‐type tau plays a key role in Alzheimer's disease, while the mechanisms underlying tauopathy and memory impairment remain unclear. Here, we report that overexpressing full‐length wild‐type human tau (hTau) in mouse hippocampus induces learning and memory deficits with remarkably reduced levels of multiple synapse‐ and memory‐associated proteins. Overexpressing hTau inhibits the activity of protein kinase A (PKA) and decreases the phosphorylation level of cAMP‐response element binding protein (CREB), GluA1, and TrkB with reduced BDNF mRNA and protein levels both in vitro and in vivo. Simultaneously, overexpressing hTau increased PKAR2α (an inhibitory subunit of PKA) in nuclear fraction and inactivated proteasome activity. With an increased association of PKAR2α with PA28γ (a nuclear proteasome activator), the formation of PA28γ‐20S proteasome complex remarkably decreased in the nuclear fraction, followed by a reduced interaction of PKAR2α with 20S proteasome. Both downregulating PKAR2α by shRNA and upregulating proteasome by expressing PA28γ rescued hTau‐induced PKA inhibition and CREB dephosphorylation, and upregulating PKA improved hTau‐induced cognitive deficits in mice. Together, these data reveal that intracellular tau accumulation induces synapse and memory impairments by inhibiting PKA/CREB/BDNF/TrkB and PKA/GluA1 signaling, and deficit of PA28γ‐20S proteasome complex formation contributes to PKAR2α elevation and PKA inhibition.  相似文献   

19.

Objective:

Obesity after menopause is a health concern for older females. Changes in the microbiota are likely to occur with this condition. Modifying the microbiota with a prebiotic is a plausible strategy for improving the health of menopausal females.

Design and Methods:

Resistant starch type 2 from high‐amylose maize (HAM‐RS2) was used as a prebiotic in rats in a 2 × 2 factorial study with two levels of HAM‐RS2 (0 or 29.7% of weight of diet) referred to as energy control (EC) and HAM‐RS2 diets, respectively; and two levels of surgery, ovariectomized (OVX) and sham.

Results:

In a 6‐week, postsurgery recovery period, OVX rats gained more body weight with consumption of a similar amount of food. Subsequently, consumption of HAM‐RS2 versus EC diets resulted in reduced abdominal fat in both OVX and sham rats; but when normalized for disemboweled body weight (body weight minus GI tract), there was no effect of surgery, only reduction with HAM‐RS2. Targeted bacterial populations were estimated that are known to ferment HAM‐RS2 or metabolize the products of that initial fermentation. OVX and sham rats demonstrated increased bacterial levels with dietary HAM‐RS2 for all bacteria. Additionally, culture techniques and qPCR provided similar results.

Conclusion:

This study shows that, as expected, OVX increases adiposity. However, contrary to previous effects seen in obese mice, this did not prevent fermentation of HAM‐RS2 and consequently, the fat gain associated with OVX was attenuated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号