共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bingham R Ekunwe SI Falk S Snyder L Kleanthous C 《The Journal of biological chemistry》2000,275(30):23219-23226
The Lit protease in Escherichia coli K-12 strains induces cell death in response to bacteriophage T4 infection by cleaving translation elongation factor (EF) Tu and shutting down translation. Suicide of the cell is timed to the appearance late in the maturation of the phage of a short peptide sequence in the major head protein, the Gol peptide, which activates proteolysis. In the present work we demonstrate that the Gol peptide binds specifically to domains II and III of EF-Tu, creating the unique substrate for the Lit protease, which then cleaves domain I, the guanine nucleotide binding domain. The conformation of EF-Tu is important for binding and Lit cleavage, because both are sensitive to the identity of the bound nucleotide, with GDP being preferred over GTP. We propose that association of the T4 coat protein with EF-Tu plays a role in phage head assembly but that this association marks infected cells for suicide when Lit is present. Based on these data and recent observations on human immunodeficiency virus type 1 maturation, we speculate that associations between host translation factors and coat proteins may be integral to viral assembly in both prokaryotes and eukaryotes. 相似文献
3.
U Aebi R van den Broek P R Smith B ten Heggeler J Dubochet V V Mesyanzhinov A Tsugita J Kistler 《Journal of molecular biology》1979,130(3):255-272
An analysis has been made of the composition and structure of the two types of sheets assembled from material from dissociated bacteriophage T2 (Poglazov &; Mesyhanzhinov, 1967) and T4 capsids. Serological techniques have been used to show that both types of sheet are assembled from proteolytic fragment of P231, the major capsid constituent. The two types of sheets have been found to interconvert depending on the concentration of Mg2+ ions in the buffer. Computer modelling experiments show that the “hexagonal” and “rectangular” morphologies observed in the negative stain are due to in-register and staggered associations, respectively, of a single basic hexagonal lattice. Analysis by polyacrylamide gel electrophoresis of samples of sheets and dissociated capsids, together with previous results from immune electron microscopy (Kistler et al., 1978), suggest that hexamers of the proteolytic fragment are derived conservatively from capsomers of the phage head.The value of this proteolytic P23 fragment has been twofold: (1) it has proved to be a useful peptide in the ongoing primary sequence determination of P23 and (2) antibodies raised against it have been employed to follow the fate of P23 antigenic sites during various steps of phage capsid maturation (Kistler et al., 1978). 相似文献
4.
5.
6.
Lysis protein T of bacteriophage T4 总被引:3,自引:0,他引:3
Summary Lysis protein T of phage T4 is required to allow the phage's lysozyme to reach the murein layer of the cell envelope and cause lysis. Using fusions of the cloned gene t with that of the Escherichia coli alkaline phosphatase or a fragment of the gene for the outer membrane protein OmpA, it was possible to identify T as an integral protein of the plasma membrane. The protein was present in the membrane as a homooligomer and was active at very low cellular concentrations. Expression of the cloned gene t was lethal without causing gross leakiness of the membrane. The functional equivalent of T in phage is protein S. An amber mutant of gene S can be complemented by gene t, although neither protein R of (the functional equivalent of T4 lysozyme) nor S possess any sequence similarity with their T4 counterparts. The murein-degrading enzymes (including that of phage P22) have in common a relatively small size (molecular masses of ca. 18 000) and a rather basic nature not exhibited by other E. coli cystosolic proteins. The results suggest that T acts as a pore that is specific for this type of enzyme. 相似文献
7.
8.
Baseplate protein of bacteriophage T4 with both structural and lytic functions. 总被引:5,自引:4,他引:5
下载免费PDF全文

Analyses of a new bacteriophage T4 mutant that permits lysis of infected cells in the absence of e lysozyme showed that the strain carried a suppressor mutation in gene 5, a gene whose polypeptide product (gp5) is an integral component of the virion baseplate. Indirect experiments indicated that cell lysis was caused by the lytic action of mutant gp5. With regard to the physiological role of normal gp5, we speculate that it functions in the initiation of infection by catalyzing local cell wall digestion to facilitate penetration of the tail tube through the cell envelope. The proposed lytic activity of gp5 may also be responsible for the well-known phenomenon of lysis from without observed with T4. 相似文献
9.
Escherichia coli infected with phage T4 mutants defective in synthesis of the three major internal proteins found in the phage head, IPI-, IPII-, IPIII-, or IP degrees (lacking all three) were examined in the electron microscope for head formation. Infection with IPI- or IPII- does not appear to induce increased aberrant head formation, whereas IPII- or IP degrees infections result in production of polyheads and viable phage. Multiple mutants of the early head formation genes 20, 21, 22, 23, 24, 31, 40 and IP degrees were constructed. Combination with IP degrees increases polyhead formation when head formation is not blocked at a more defective stage but results in a qualitative shift to lump formation in association with gene 22 mutants. Thin-sectioning studies show morphologically similar cores in amber 21 and 21am IP degrees tau particles. These morphological observations, genetic evidence for interaction between ts mutants in gene 22 and the IP mutants, and analysis of the protein composition of tau particles further support the idea that p22 and the internal proteins form an unstable assembly core necessary for an early stage of head formation (M. K. Showe and L. W. Black, 1973). 相似文献
10.
11.
Self cleavage of a precursor RNA from bacteriophage T4 总被引:9,自引:0,他引:9
We found that a precursor of an RNA molecule from T4-infected Escherichia coli cells (p2Spl; precursor of species 1) has the capacity to cleave itself in a specific position. This cleavage is similar to a cleavage carried out by the aid of a protein, RNase F, that has been previously identified. This cleavage could lead to the maturation of an RNA (species 1) found in T4-infected E. coli cells. The reaction is time and temperature-dependent and is relatively slow as compared to the protein-dependent reaction. It requires at least a monovalent cation and is aided by non-ionic detergents. In the absence of detergent the cleavage can occur but at a reduced rate. The substrate does not contain hidden nicks and a variety of experiments suggest that it does not contain a protein. Moreover, we found no indication that the cleavage is due to contaminating nucleases in the substrate or in the reagents. The intact secondary and tertiary structures of the molecule are necessary for the cleavage to occur. The finding of a self cleaving RNA molecule has interesting evolutionary implications. 相似文献
12.
13.
A Boosman 《The Journal of biological chemistry》1978,253(22):7981-7984
Bacteriophage T4 carrying an amber mutation in gene 22 plus an amber mutation in gene 21 form aberrant, tubular structures termed rough polyheads, instead of complete phage when they infect Escherichia coli B. These rough polyheads consist almost entirely of the major capsid protein in its uncleaved form (gp23). When rough polyheads are treated under mild conditions with any of the five proteases, trypsin, chymotrypsin, thermolysin, pronase, or the protease from Staphylococcus aureus V8, the gp23 is rapidly hydrolyzed at a limited number of peptide bonds. In contrast, cleaved capsid protein (gp23) in mature phage capsids is completely resistant to proteolysis under the same conditions. A major project in this laboratory requires determining the primary structure of gp23, a large protein (Mr = 58,000) quite rich in those amino acids at which cleavages are achieved by conventional means. Recovery of peptides from the complex mixtures resulting from such cleavages proved to be extremely difficult. The limited proteolysis of gp23 in rough polyheads had yielded a set of large, easily purified fragments which are greatly simplifying the task of determining the primary structure of this protein. 相似文献
14.
15.
16.
17.
Phage DNA was accumulated in cells of E. coli B, infected with the phage T4DtsLB3 (gene 42), without the synthesis of late proteins (in the presence of chloramphenicol). Then (stage II), chloramphenicol was removed and further replication of the phage DNA suppressed with hydroxyurea and by simultaneously raising the temperature to 40 degrees. The media M9 or M9 with 1% amino acid were used; the times of addition of chloramphenicol and the hydroxyurea concentration were also varied. It was also shown that in medium M9, at stage II, chiefly early proteins were synthesized. In the medium containing amino acids, at stage II the following was observed: 1) DNA synthesis was entirely suppressed and a degradation of DNA occurred; 2) both early and late proteins were synthesized, with a predominance of the latter; 3) an assembly of the elements of the phage tails and capsids occurred without the neck and flagellum, and a small number of phage particles were also found; 4) the capsids, isolated in a sucrose density gradient after lysis with chloroform, contained the proteins Palt, P20, P23, P24, several unidentified proteins, and did not contain Pwac, P23, and P22, 5) the yield of viable phage varied from 0.05 to 15% per cell. Thus, the entire morphogenesis of T4 phage can occur without accompanying replication of phage DNA. 相似文献
18.
Mordechai Suissa Shoshy Altuvia Simi Koby Hilla Giladi Amos B. Oppenheim 《Molecular & general genetics : MGG》1988,214(3):570-573
Summary The D gene of bacteriophage which codes for a major head protein is expressed at a high level during growth. We have constructed a set of D-lacZ gene fusions in order to examine the factors determining the high efficiency of the D translational initiation signals. It was found that an integral sequence, 300 bp long and upstream of the ATG initiation codon, is required for maximal protein synthesis. 相似文献
19.
Heat cleavage of bacteriophage T4 gene 23 product produces two peptides previously identified as head proteins. 总被引:1,自引:1,他引:1
下载免费PDF全文

During studies on the intracellular protein pools of bacteriophage T4, we found that amber mutants in gene 23 blocked the synthesis of a 20-kilodalton (kDa) protein. Radiolabeled amino acid pulses showed that the protein appears at 8 min postinfection with kinetics similar to those of other major late species. Pulse-chase experiments demonstrated that the 20-kDa protein behaves like a primary product and also revealed a 29-kDa protein which, like other proteins cleaved during head assembly, appeared only after a long chase. Both species have been identified as constituents of the T4 head and have resisted previous efforts to identify their genetic origin. The dependence of the 20- and 29-kDa head proteins on the presence of gene 23 protein (gp23) and the observation that the sum of their masses equalled that of mature cleaved gp23 suggested that these two proteins were derived from this major capsid species. Evidence is presented demonstrating that heating samples before electrophoresis causes peptide bond cleavages in gp23, leading to the formation of the two peptides. As predicted by the results of Rittenhouse and Marcus (Anal. Biochem. 138:442-448, 1984), the cleavage occurs at Asp-336-Pro-337 and at two other Asp-Pro sites. Limited heat-induced proteolysis followed by two-dimensional gel analysis provided a peptide map of gp23 useful in the characterization of its assembly-related cleavages. 相似文献
20.
Purification and characterization of the T4 bacteriophage uvsX protein 总被引:21,自引:0,他引:21
Gene uvsX of bacteriophage T4 encodes a 40,000-dalton protein that plays a key role in the major pathway for genetic recombination in T4-infected cells. Mutations at the uvsX locus lead to increased sensitivity to various DNA-damaging agents, reduced phage bursts, decreased genetic recombination, and early arrest of DNA synthesis. Like the Escherichia coli recA protein, the purified uvsX protein is a DNA-dependent ATPase that catalyzes pairing between homologous single- and double-stranded DNA molecules in vitro (Yonesaki, T., Ryo, Y., Minagawa, T., and Takahashi, H., (1985) Eur. J. Biochem. 148, 127-134). At physiological salt concentrations, the uvsX protein binds tightly and cooperatively to single-stranded DNA, covering about five nucleotides per protein monomer; at lower salt concentrations, a similar type of binding to double-stranded DNA is detected (Griffith, J., and Formosa, T., (1985) J. Biol. Chem. 260, 4484-4491). We show here that the ATPase activity of this protein is unusual in producing both ADP plus Pi and AMP plus PPi as products. Generating the fully active form of the ATPase is a cooperative process, apparently requiring that a protein monomer be bound to single-stranded DNA while surrounded by other ATP-bound monomers. The catalysis of homologous pairing by the uvsX protein is shown to be greatly stimulated by the presence of the T4 gene 32 protein, a helix-destablizing protein previously studied in this laboratory, and it requires continued ATP hydrolysis. We present a method that allows the purification of the uvsX protein to essential homogeneity. We also describe the complete purification of two proteins that bind to the uvsX protein: the T4 uvsY protein (16,000 daltons) and an E. coli host protein of 32,000 daltons whose gene is unknown. The host protein is likely to play a role in DNA metabolism, because it also binds to the T4 gene 32 protein and to DNA; the sequence of its amino-terminal 29 amino acids has been determined. 相似文献