首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the effects of high oxygen (O2) tension on pulmonary vascular reactivity, we exposed rats either to 100% O2 for 48 hrs or 40% O2 for 3 to 5 weeks. Lungs from all rats were isolated, blood perfused and ventilated, and pressor responses to airway hypoxia and to infused angiotensin II were measured. We found that chronic subtoxic hyperoxia did not augment subsequent hypoxic vasoconstriction, and that 48 hrs of 100% O2 markedly blunted hypoxic vasoconstriction. Meclofenamate restored hypoxic vasoconstriction to control levels in the lungs with blunted responses. Evidence for O2 toxicity in the lungs exposed to 100% O2 included interstitial swelling with alveolar exudates seen by light microscopy, and lung edema by water content calculations. We conclude that 1) chronic subtoxic hyperoxia does not influence subsequent hypoxic vasoconstriction, and 2) a dilator prostaglandin produced in the lung is a potent inhibitor of hypoxic vasoconstriction in O2 toxic lungs.  相似文献   

2.
Impaired lung development is a major negative factor in the survival of preterm neonates. The present study was aimed to investigate the impact of constant oxygen, intermittent hyperoxia, and hypoxia on the lung development in preterm rat neonates. Neonatal rats were exposed to 40% O2 with or without brief hyperoxia episodes (95% O2) or brief hypoxia episodes (10% O2) from day 0 to day 14, or to room air. The body weight, radical alveolar count (RAC), and total antioxidant capacity (TAOC) were significantly lower whereas the lung coefficient and malondialdehyde (MDA) were significantly higher in the hyperoxia and hypoxia groups than the air control and constant oxygen group at day 7, day 14, and day 21 after birth. The lung function indexes were reduced by intermittent hyperoxia and hypoxia. In contrast, the constant oxygen therapy increased the lung function. HIF-1α and VEGF expression were significantly increased by hypoxia and decreased by hyperoxia. The constant oxygen therapy only decreased the HIF-1α expression at day 14 and 21. In summary, the constant oxygen treatment promoted lung function without affecting the antioxidative capacity in preterm rat neonates. While intermittent hyperoxia and hypoxia inhibited lung development, decreased antioxidative capacity, and dysregulated HIF-1α/VEGF signaling in preterm rat neonates.  相似文献   

3.
Pulmonary vascular resistance in the fluorocarbon-filled lung   总被引:3,自引:0,他引:3  
Pulmonary vascular resistance was investigated in the fluorocarbon-filled lung in an in situ isolated lung preparation. Lungs were perfused at constant flow (100 ml X min-1 X kg-1) with whole blood from a donor cat. left atrial pressure was held constant at zero pressure. Measurements of pulmonary arterial pressure enabled calculation of pulmonary vascular resistance. Regional changes in pulmonary blood flow were determined by the microsphere technique. During quasi-static deflation over a range of 0-30 mmHg, dependent alveolar pressure was consistently greater for a volume of fluorocarbon than for gas, with each pressure-volume curve for the fluorocarbon-filled lung shifted to the right of the curve for the gas-filled lung. In turn, pulmonary vascular resistance was found to increase linearly as a function of increasing alveolar pressure, independent of the medium in the lung. Thus, for a given volume, pulmonary vascular resistance was consistently greater in the fluorocarbon-filled lung compared with the gas-filled lung. This increase in pulmonary vascular resistance was accompanied by a redistribution of pulmonary blood flow in which blood flow to the dependent region was decreased in the fluorocarbon-filled lung compared with the gas-filled lung. Conversely, the less-dependent regions of the lung received a relatively greater percentage of blood flow when filled with fluorocarbon compared with gas. These findings suggest that pulmonary vascular resistance is increased during liquid ventilation, largely as the result of mechanical interaction at the alveolar-vascular interface.  相似文献   

4.
To investigate the effect of alveolar hypoxia onthe pulmonary blood flow-segmental vascular resistance relationship, wedetermined the longitudinal distribution of vascular resistance whileincreasing blood flow during hyperoxia or hypoxia in perfused catlungs. We measured microvascular pressures by the micropipetteservo-null method, partitioned the pulmonary vessels into threesegments [i.e., arterial (from main pulmonary artery to 30- to50-µm arterioles), venous (from 30- to 50-µm venules to leftatrium), and microvascular (between arterioles and venules)segments] and calculated segmental vascular resistance. Duringhyperoxia, total resistance decreased with increased blood flow becauseof a reduction of microvascular resistance. In contrast, duringhypoxia, not only microvascular resistance but also arterial resistancedecreased with increase of blood flow while venous resistance remainedunchanged. The reduction of arterial resistance was presumably causedby arterial distension induced by an elevated arterial pressure duringhypoxia. We conclude that, during hypoxia, both microvessels andarteries >50 µm in diameter play a role in preventing furtherincreases in total pulmonary vascular resistance with increased bloodflow.

  相似文献   

5.
NAD(P)H:quinone oxidoreductase 1 (NQO1) plays a dominant role in the reduction of the quinone compound 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) to durohydroquinone (DQH2) on passage through the rat lung. Exposure of adult rats to 85% O2 for > or =7 days stimulates adaptation to the otherwise lethal effects of >95% O2. The objective of this study was to examine whether exposure of adult rats to hyperoxia affected lung NQO1 activity as measured by the rate of DQ reduction on passage through the lung. We measured DQH2 appearance in the venous effluent during DQ infusion at different concentrations into the pulmonary artery of isolated perfused lungs from rats exposed to room air or to 85% O2. We also evaluated the effect of hyperoxia on vascular transit time distribution and measured NQO1 activity and protein in lung homogenate. The results demonstrate that exposure to 85% O2 for 21 days increases lung capacity to reduce DQ to DQH2 and that NQO1 is the dominant DQ reductase in normoxic and hyperoxic lungs. Kinetic analysis revealed that 21-day hyperoxia exposure increased the maximum rate of pulmonary DQ reduction, Vmax, and the apparent Michaelis-Menten constant for DQ reduction, Kma. The increase in Vmax suggests a hyperoxia-induced increase in NQO1 activity of lung cells accessible to DQ from the vascular region, consistent qualitatively but not quantitatively with an increase in lung homogenate NQO1 activity in 21-day hyperoxic lungs. The increase in Kma could be accounted for by approximately 40% increase in vascular transit time heterogeneity in 21-day hyperoxic lungs.  相似文献   

6.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3.We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.  相似文献   

7.
Hyperoxia disrupts vascular and alveolar growth of the developing lung and contributes to the development of bronchopulmonary dysplasia (BPD). Endothelial progenitor cells (EPC) have been implicated in repair of the vasculature, but their role in lung vascular development is unknown. Since disruption of vascular growth impairs lung structure, we hypothesized that neonatal hyperoxia impairs EPC mobilization and homing to the lung, contributing to abnormalities in lung structure. Neonatal mice (1-day-old) were exposed to 80% O(2) at Denver's altitude (= 65% at sea level) or room air for 10 days. Adult mice were also exposed for comparison. Blood, lung, and bone marrow were harvested after hyperoxia. Hyperoxia decreased pulmonary vascular density by 72% in neonatal but not adult mice. In contrast to the adult, hyperoxia simplified distal lung structure neonatal mice. Moderate hyperoxia reduced EPCs (CD45-/Sca-1+/CD133+/VEGFR-2+) in the blood (55%; P < 0.03), bone marrow (48%; P < 0.01), and lungs (66%; P < 0.01) of neonatal mice. EPCs increased in bone marrow (2.5-fold; P < 0.01) and lungs (2-fold; P < 0.03) of hyperoxia-exposed adult mice. VEGF, nitric oxide (NO), and erythropoietin (Epo) contribute to mobilization and homing of EPCs. Lung VEGF, VEGF receptor-2, endothelial NO synthase, and Epo receptor expression were reduced by hyperoxia in neonatal but not adult mice. We conclude that moderate hyperoxia decreases vessel density, impairs lung structure, and reduces EPCs in the circulation, bone marrow, and lung of neonatal mice but increases EPCs in adults. This developmental difference may contribute to the increased susceptibility of the developing lung to hyperoxia and may contribute to impaired lung vascular and alveolar growth in BPD.  相似文献   

8.
Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.  相似文献   

9.
Breathing air with a high oxygen tension induces an inflammatory response and injures the microvessels of the lung. The resulting development of smooth muscle cells in these segments contributes to changes in vasoreactivity and increased pulmonary artery pressure. This in vivo study determines the temporal and spatial expression of endogenous endothelial nitric oxide synthase (NOS III) and inducible NOS (NOS II), important enzymes regulating vasoreactivity and inflammation, in the adult rat lung during the development of experimental pulmonary hypertension induced by oxidant injury. We analyzed the cellular distribution of these NOS isoforms, using specific antibodies, and assessed enzyme activity at baseline and after 1-28 days of hyperoxia (FIO2 0.87). The number of NOS III-immuno-positive endothelial cells increased early in hyperoxia and then remained high. By day 28, the relative number of these cells had increased from 40% in proximal vessels and 13-16% in distal alveolar vessels of the normal lung to 73-86% and 40-59%, respectively, in hyperoxia. Pulmonary alveolar macrophages (PAMs), normally few in number and only weakly immunopositive for NOS II or III in the normal lung, increased in number in hyperoxia and were strongly immunopositive for each isoform. These morphological data were supported by a temporal increase in total and calcium-independent NOS activity. Thus NOS expression and activity significantly increased in hyperoxia as pulmonary hypertension developed, and NOS III expression increased selectively in vascular endothelial cells, while both NOS isoforms were expressed by the PAM population. We conclude that this increase in expression of a potent vasodilator, an antiproliferative agent for smooth muscle cells, and an antioxidant molecule represents an adaptive response to protect the lung from oxidant-induced vascular and epithelial injury.  相似文献   

10.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11- eicosatrieonic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arichidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF and TXB2 compared to control lungs. Thus there is an associated between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like materiali rat raised on an EFAD diet.  相似文献   

11.

Background

Lung ischemia-reperfusion (IR) injury leads to significant morbidity and mortality which remains a major obstacle after lung transplantation. However, the role of various subset(s) of lung cell populations in the pathogenesis of lung IR injury and the mechanisms of cellular protection remain to be elucidated. In the present study, we investigated the effects of adenosine A2A receptor (A2AAR) activation on resident lung cells after IR injury using an isolated, buffer-perfused murine lung model.

Methods

To assess the protective effects of A2AAR activation, three groups of C57BL/6J mice were studied: a sham group (perfused for 2 hr with no ischemia), an IR group (1 hr ischemia + 1 hr reperfusion) and an IR+ATL313 group where ATL313, a specific A2AAR agonist, was included in the reperfusion buffer after ischemia. Lung injury parameters and pulmonary function studies were also performed after IR injury in A2AAR knockout mice, with or without ATL313 pretreatment. Lung function was assessed using a buffer-perfused isolated lung system. Lung injury was measured by assessing lung edema, vascular permeability, cytokine/chemokine activation and myeloperoxidase levels in the bronchoalveolar fluid.

Results

After IR, lungs from C57BL/6J wild-type mice displayed significant dysfunction (increased airway resistance, pulmonary artery pressure and decreased pulmonary compliance) and significant injury (increased vascular permeability and edema). Lung injury and dysfunction after IR were significantly attenuated by ATL313 treatment. Significant induction of TNF-α, KC (CXCL1), MIP-2 (CXCL2) and RANTES (CCL5) occurred after IR which was also attenuated by ATL313 treatment. Lungs from A2AAR knockout mice also displayed significant dysfunction, injury and cytokine/chemokine production after IR, but ATL313 had no effect in these mice.

Conclusion

Specific activation of A2AARs provides potent protection against lung IR injury via attenuation of inflammation. This protection occurs in the absence of circulating blood thereby indicating a protective role of A2AAR activation on resident lung cells such as alveolar macrophages. Specific A2AAR activation may be a promising therapeutic target for the prevention or treatment of pulmonary graft dysfunction in transplant patients.  相似文献   

12.
Background aimsHuman amnion epithelial cells (hAECs) prevent pulmonary inflammation and injury in fetal sheep exposed to intrauterine lipopolysaccharide. We hypothesized that hAECs would similarly mitigate hyperoxia-induced neonatal lung injury.MethodsNewborn mouse pups were randomized to either normoxia (inspired O2 content (FiO2) = 0.21, n = 60) or hyperoxia (FiO2 = 0.85, n = 57). On postnatal days (PND) 5, 6 and 7, hAECs or sterile saline (control) was administered intraperitoneally. All animals were assessed at PND 14.ResultsHyperoxia was associated with lung inflammation, alveolar simplification and reduced postnatal growth. Administration of hAECs to hyperoxia-exposed mice normalized body weight and significantly attenuated some aspects of hyperoxia-induced lung injury (mean linear intercept and septal crest density) and inflammation (interleukin-1α, interleukin-6, transforming growth factor-β and platelet-derived growth factor-β). However, hAECs did not significantly alter changes to alveolar airspace volume, septal tissue volume, tissue-to-airspace ratio, collagen content or leukocyte infiltration induced by hyperoxia.ConclusionsIntraperitoneal administration of hAECs to neonatal mice partially reduced hyperoxia-induced lung inflammation and structural lung damage. These observations suggest that hAECs may be a potential therapy for neonatal lung disease.  相似文献   

13.
Hyperoxia increases oxygen radical production in rat lung homogenates   总被引:4,自引:0,他引:4  
Lung damage during hyperoxia has been postulated to be due to increased rates of local organ oxygen radical production. Lung homogenate respiration was inhibited with cyanide, and residual respiration was used as an indicator of electron diversion to O2? and H2O2. Cyanide-resistant respiration in lung homogenates, supplemented with 1 mm NADH, increased linearly with oxygen tension, and accounted for 7% of total respiration in air and for 17% of total respiration when homogenates were incubated in 80% oxygen. Exposure of rats to 85% oxygen for 7 days induces tolerance to the lethal effects of 100% oxygen. Rats which previously breathed 85% oxygen for 7 days had a greater CN?-resistant respiration than control rats. This implies that adaptation to hyperoxia does not include decreased lung tissue oxygen radical production as indicated by CN?-resistant respiration. One possible explanation for the increased CN?-resistant respiration in oxygen tolerant rat lungs is that they contain increased cell mass. Lung homogenates of rats exposed to 85% oxygen for 7 days also had 2.5 times greater thiobarbituric acid positive material than controls, indicating that increased lung lipid peroxidation occurs as a consequence of hyperoxia. Incubation of normal rat lung homogenates under hyperoxic conditions also acutely increased lipid peroxidation, which could be inhibited by both superoxide dismutase and catalase. This confirms that hyperoxia enhances cellular production of O2? and H2O2 and implies an essential role for both O2? and H2O2 in hyperoxic lung damage.  相似文献   

14.
An open gas exchange system was used to monitor the nonsteady state and steady state changes in nitrogenase activity (H2 evolution in N2:O2 and Ar:O2) and respiration (CO2 evolution) in attached, excised, and sliced nodules of soybean (Glycine max L. Merr.) exposed to external pO2 of 5 to 100%. In attached nodules, increases in external pO2 in steps of 10 or 20% resulted in sharp declines in the rates of H2 and CO2 evolution. Recovery of these rates to values equal to or greater than their initial rates occurred within 10 to 60 minutes of exposure to the higher pO2. Recovery was more rapid at higher initial pO2 and in Ar:O2 compared to N2:O2. Sequential 10% increments in pO2 to 100% O2 resulted in rates of H2 evolution which were 1.4 to 1.7 times the steady state rate at 20% O2 in Ar. This was attributed to a relief at high pO2 from the 40% decline in nitrogenase activity that was induced by Ar at a pO2 of 20%. Changes in nodule respiration rate could not account for the nodules' ability to adjust to high external pO2, supporting the hypothesis that soybean nodules have a variable barrier to O2 diffusion which responds slowly (within minutes) to changes in pO2. Nodule excision and slicing resulted in 45 and 78% declines, respectively, in total specific nitrogenase activity at 20% O2. In contrast with the result obtained with intact nodules, subsequent 10% increases in pO2 in Ar:O2 did not result in transient declines in H2 evolution rates, but in the rapid attainment of new steady state rates. Also, distinct optima in nitrogenase activity were observed at about 60% O2. These results were consistent with an increase in the diffusive resistance of the nodule cortex following nodule excision or nodule slicing. This work also shows the importance of using intact plants and continuous measurements of gas exchange in studies of O2 diffusion and nitrogenase activity in legume nodules.  相似文献   

15.
Supraphysiological O2 concentrations, mechanical ventilation, and inflammation significantly contribute to the development of bronchopulmonary dysplasia (BPD).Exposure of newborn mice to hyperoxia causes inflammation and impaired alveolarization similar to that seen in infants with BPD.Previously, we demonstrated that pulmonary cyclooxygenase-2 (COX-2) protein expression is increased in hyperoxia-exposed newborn mice.The present studies were designed to define the role of COX-2 in newborn hyperoxic lung injury.We tested the hypothesis that attenuation of COX-2 activity would reduce hyperoxia-induced inflammation and improve alveolarization.Newborn C3H/HeN micewere injected daily with vehicle, aspirin (nonselective COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor) for the first 7 days of life.Additional studies utilized wild-type (C57Bl/6, COX-2+/+), heterozygous (COX-2+/-), and homozygous (COX-2-/-) transgenic mice.Micewere exposed to room air (21% O2) or hyperoxia (85% O2) for 14 days.Aspirin-injected and COX-2-/- pups had reduced levels of monocyte chemoattractant protein (MCP-1) in bronchoalveolar lavage fluid (BAL).Both aspirin and celecoxib treatment reduced macrophage numbers in the alveolar walls and air spaces.Aspirin and celecoxib treatment attenuated hyperoxia-induced COX activity, including altered levels of prostaglandin (PG)D2 metabolites.Decreased COX activity, however, did not prevent hyperoxia-induced lung developmental deficits.Our data suggest thatincreased COX-2 activity may contribute to proinflammatory responses, including macrophage chemotaxis, during exposure to hyperoxia.Modulation of COX-2 activity may be a useful therapeutic target to limit hyperoxia-induced inflammation in preterm infants at risk of developing BPD.  相似文献   

16.
Leon Cudkowicz 《CMAJ》1965,92(3):111-115
Cardiorespiratory studies in 13 young females and 11 middle-aged men with localized acute pulmonary tuberculosis revealed evidence of significant resting hyperventilation and reduction in the dynamics of ventilation indicative of restrictive lung disease. Indices of intrapulmonary mixing and pulmonary diffusing capacities were normal, as were alveolar-arterial pCO2 gradients.The ventilation/perfusion ratios were slightly elevated in both groups, while pulmonary artery pressure and total pulmonary vascular resistance (TPVR) showed a rise in the males only.Both groups showed an increase in actual QBF flows and a resultant significant decrease in arterial pO2, which suggests that the areas of tuberculous infection are metabolically active.  相似文献   

17.
We previously reported that Fischer (F) rat lungs developed more extensive injury when challenged with oxidants than age-matched Sprague-Dawley (SD) rat lungs. We now describe a reduced pulmonary vascular response to alveolar hypoxia and angiotensin II (ANG II) in F compared with SD rats. The comparative studies were performed with isolated lungs perfused with salt solution or blood, catheter-implanted awake rats, and isolated main pulmonary arterial rings. Isolated lungs from F rats perfused with either blood or salt solution had reduced vasoconstriction in comparison with lungs from SD rats when exposed to alveolar hypoxia or challenged with ANG II. Instrumented awake F rats had a smaller mean increase in total pulmonary vascular resistance (PVR) than SD rats (35 vs. 94 mmHg.min.l-1, P less than 0.05) when challenged with 8% oxygen. The contractile response of isolated pulmonary artery but not thoracic aortic rings to KCl and ANG II was reduced in F compared with SD rats. In addition, F rats exposed to 4 wk of hypobaric hypoxia developed less pulmonary hypertension and right ventricular hypertrophy (when corrected for the hematocrit) than SD rats. We conclude that the oxidant stress-sensitive inbred F rat strain is characterized by a lung vascular bed that is relatively unresponsive to vasoconstricting stimuli. The mechanism underlying this genetic difference in lung vascular control remains to be defined.  相似文献   

18.
When excised root nodules ofCoriaria arborea are assayed for nitrogenase activity at various pO2 they show a broad optimum between 20 and 40 kPa O2, with some evidence for adaptation. Continuous flow assays of nodulated root systems of intact plants indicate that Coriaria shows an acetylene induced decline in nitrogenase activity. When root systems were subject to step changes in pO2 nitrogenase activity responded with a steep decline followed by a slower rise in activity both at lower and higher than ambient pO2. Thus Coriaria nodules are able to adapt rapidly to oxygen levels well above and well below ambient. Measurement of nodule diffusion resistance showed that the adaptation is accompanied by rapid increase in resistance at above ambient pO2 and decrease in resistance at below ambient pO2. Plants grown with root systems at pO2 from 5–40 kPa O2 did not differ in growth or nodulation. The anatomy of Coriaria nodules shows they have a dense periderm which encircles the nodule and also closely invests the infected zone. The periderm is both thicker and more heavily suberised in nodules grown at high pO2 than at low pO2. Vacuum infiltration of India ink indicates that oxygen diffusion is entirely through the lenticel and via a small gap adjacent to the stele.  相似文献   

19.

Background

Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium.

Methods

Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay.

Results

Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic.

Conclusions

VEGFB and PlGF can either inhibit or potentiate the actions of VEGFA, depending on their relative concentrations, which change in the hypoxic lung. Thus their actions in vivo depend on their specific concentrations within the microenvironment of the alveolar wall during the course of adaptation to pulmonary hypoxia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号