首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu  Cheng  Sun  Baobao  Zhang  Xuhui  Liu  Xiaoyu  Drosos  Marios  Li  Lianqing  Pan  Genxing 《Journal of Plant Growth Regulation》2021,40(4):1466-1476

Although amending biochar into agricultural soils has been regarded as an effective measure to improve crop productivity, it remains unclear why biochar increases crop yield. The objective of this study was to compare the relative contribution of different biochar components in crop growth promotion. Three biochar components were separated: (i) water-soluble biochar extract (BE), (ii) mineral nutrients from biochar ash (BA), and (iii) washed biochar residue (WB). Two soils (Anthrosol and Primosol) with distinctly different organic carbon content, soil texture and land use were amended with the three biochar components and their effects on maize (Zea mays L.) growth were tested in a pot experiment. We hypothesized that (1) plant grown in the Anthrosol benefitted more from the water-soluble compounds of biochar than from its mineral nutrients or washed residue, since the soil is already fertile and has a good structure; (2) plant grown in the Primosol benefitted more from the mineral nutrients of biochar and its washed residual, since the soil is nutrient-poor and has a poor structure. The addition of biochar and its three components increased maize aboveground biomass for both soils. In the Anthrosol, BE, BA, and WB increased the aboveground biomass by 41.6%, 32.7%, and 27.1%; in the Primosol, they increased the aboveground biomass by 41.3%, 24.4%, and 18.2%, respectively. BE had the highest plant growth-promoting effect compared to the other two biochar components, which was regardless of soil condition. In addition, the biomass, total volume, surface area, and number of maize root tips under BE amendment were significantly enhanced, particularly the fine roots (< 0.2 mm in diameter). And a strong positive correlation was observed between maize aboveground biomass and the total length of the fine roots. The results demonstrated that the water-soluble compounds present in biochar, in addition to the mineral nutrients and the washed biochar residue, dominate the plant growth promotion under both soil conditions.

  相似文献   

2.
The effect of arbuscular mycorrhizal fungi (AMF) on plant growth was examined in two wild plant species belonging to contrasting functional types: an annual forb (Bidens pilosa, Asteraceae) and a deciduous shrub (Acacia caven, Fabaceae) at three contrasting plant densities (one, two, and three individuals per pot). AMF had a slightly negative effect on B. pilosa when the species grew in isolation while they positively affected A. caven. Positive effects of AMF on shoot mass of A. caven decreased at higher plant densities, while shoot mass of individuals of B. pilosa showed less marked differences between plant densities. When considering total biomass per pot, AMF positively affected A. caven growth while negatively affecting B. pilosa, at all three plant densities. Root/shoot ratio per pot was negatively affected by AMF but not plant density in both species. These findings highlight the importance of including plants belonging to different life forms and/or traits in research regarding the interaction between AMF and intraspecific plant competition.  相似文献   

3.
Sustainable Rangeland Grazing in Norse Faroe   总被引:1,自引:1,他引:0  
The introduction of domestic livestock, particularly sheep, and rangeland grazing by Norse settlers to Faroe during the ninth century has generally been described as a major pressure on a sensitive landscape, leading to rapid and widespread vegetation change and contributing to land degradation. This view has, however, been developed without consideration of Norse grazing management practices which may have served to minimize grazing impacts on landscapes as well as sustaining and enhancing vegetation and livestock productivity. These alternative scenarios are considered using a historical grazing management simulation model with Faroese climate and vegetation inputs and given archaeological, historical and palaeoenvironmental parameters. Three contrasting rangeland areas are investigated and, based on the maximum number of ewe/lamb pairs the rangeland could sustain, modeling suggests that utilizable biomass declined with the onset of grazing activity, but not to a level that would cause major changes in vegetation cover or contribute to soil erosion even under climatically determined poor growth conditions. When rangeland areas partitioned into what are termed hagi and partir are modeled, grazing levels are still within rangeland carrying capacities, but productivities are variable. Some rangeland areas increase biomass and livestock productivities and biomass utilization rates while other rangeland areas that were too finely partitioned were likely to suffer substantial decline in livestock productivity. Partitioning of rangeland is a likely contributor to long-term differentiation of landscapes and the relative success of settlements across Faroe beyond the Norse period.  相似文献   

4.
Forestry management worldwide has become increasingly effective at obtaining high timber yields from productive forests. In New Zealand, a focus on improving an increasingly successful and largely Pinus radiata plantation forestry model over the last 150 years has resulted in some of the most productive timber forests in the temperate zone. In contrast to this success, the full range of forested landscapes across New Zealand, including native forests, are impacted by an array of pressures from introduced pests, diseases, and a changing climate, presenting a collective risk of losses in biological, social and economic value. As the national government policies incentivise reforestation and afforestation, the social acceptability of some forms of newly planted forests is also being challenged. Here, we review relevant literature in the area of integrated forest landscape management to optimise forests as nature-based solutions, presenting ‘transitional forestry’ as a model design and management paradigm appropriate to a range of forest types, where forest purpose is placed at the heart of decision making. We use New Zealand as a case study region, describing how this purpose-led transitional forestry model can benefit a cross section of forest types, from industrialised forest plantations to dedicated conservation forests and a range of multiple-purpose forests in between. Transitional forestry is an ongoing multi-decade process of change from current ‘business-as-usual’ forest management to future systems of forest management, embedded across a continuum of forest types. This holistic framework incorporates elements to enhance efficiencies of timber production, improve overall forest landscape resilience, and reduce some potential negative environmental impacts of commercial plantation forestry, while allowing the ecosystem functioning of commercial and non-commercial forests to be maximised, with increased public and biodiversity conservation value. Implementation of transitional forestry addresses tensions that arise between meeting climate mitigation targets and improving biodiversity criteria through afforestation, alongside increasing demand for forest biomass feedstocks to meet the demands of near-term bioenergy and bioeconomy goals. As ambitious government international targets are set for reforestation and afforestation using both native and exotic species, there is an increasing opportunity to make such transitions via integrated thinking that optimises forest values across a continuum of forest types, while embracing the diversity of ways in which such targets can be reached.  相似文献   

5.
Soil health is essential and irreplaceable for plant growth and global food production, which has been threatened by climate change and soil degradation. Degraded coastal soils are urgently required to reclaim using new sustainable technologies. Interest in applying biochar to improve soil health and promote crop yield has rapidly increased because of its multiple benefits. However, effects of biochar addition on the saline–sodic coastal soil health and halophyte growth were poorly understood. Response of two halophytes, Sesbania (Sesbania cannabina) and Seashore mallow (Kosteletzkya virginica), to the individual or co‐application of biochar and inorganic fertilizer into a coastal soil was investigated using a 52 d pot experiment. The biochar alone or co‐application stimulated the plant growth (germination, root development, and biomass), primarily attributed to the enhanced nutrient availability from the biochar‐improved soil health. Additionally, the promoted microbial activities and bacterial community shift towards the beneficial taxa (e.g. Pseudomonas and Bacillus) in the rhizosphere also contributed to the enhanced plant growth and biomass. Our findings showed the promising significance because biochar added at an optimal level (≤5%) could be a feasible option to reclaim the degraded coastal soil, enhance plant growth and production, and increase soil health and food security.  相似文献   

6.
生物炭能改良土壤从而促进植物生长和氮素吸收,但其作用效果是否受水氮条件的影响尚不清楚。以湿地植物芦苇为研究对象,在3种氮添加水平(无添加,30 kg hm-2 a-1和60 kg hm-2 a-1)和两种水分(淹水和非淹水)条件下分别进行生物炭添加和不添加处理,结果表明:(1)生物炭添加能促进芦苇根系生长,在非淹水条件下根系生物量增加了40.5%,在淹水条件下根系生物量增加了20.1%。(2)生物炭添加能促进非淹水条件下芦苇的氮素吸收,能提高淹水条件下芦苇的氮素生产力。(3)生物炭添加加剧了土壤氮素损失,且在非淹水高氮条件下作用最强,可能是由于生物炭促进了芦苇的氮素吸收。芦苇氮素吸收速率与土壤氮损失之间存在显著的正相关关系。因此,在添加生物炭时,需要考虑土壤水分状况和氮素富集程度以及植物的氮素吸收偏好。该研究结果可为生物炭在湿地生态系统中的应用提供参考。  相似文献   

7.
Biochar as Electron Acceptor for Microbial Extracellular Respiration   总被引:1,自引:0,他引:1  
Biochar is a charred carbonaceous material that has recently been identified to provide many potential environmental and agricultural applications. Biochar amendments are shown to effectively improve the quality of soil and increase soil microbial biomass. However, the interactions between biochar and microorganisms and the mechanisms through which biochar influences soil microbial growth and activities remain unclear. In this study, we investigated the potential for biochar to function as an electron acceptor for microbial extracellular respiration and growth. Anaerobic incubation of Geobacter sulfurreducens revealed that biochar was used as a sole terminal electron acceptor, as evidenced by a 31-fold increase of biomass and gradual increase in reducing equivalents of biochar and the consumption of acetate after 15 d. An electron stoichiometry analysis showed that 58.7% of the electrons released from acetate oxidation could be recovered in biochar, which was comparable to that of humic substances (44.8%). The finding that biochar participates in microbial extracellular respiration may have important environmental implications considering the widespread existence of both extracellular-respiring microorganisms and black carbon in the environment.  相似文献   

8.
The annual rhythm of cambial activity is compared in Proustia cuneifolia and Acacia caven, two typical shrubs of the “matorral” in the semiarid region of central Chile. Proustia, a drought deciduous shrub, shows a typical desert cambial rhythm, highly sensitive to rainfall. The growth activity of this species is limited to the periods of adequate moisture. Acacia is an evergreen whose cambial activity is observed almost throughout the year; it is not synchronous with rainfall. Adaptation in this species seems to consist in developing long roots able to tap underground water. These results indicate that both shrubs, although growing together, have different adaptive strategies to the same xerophytic conditions.  相似文献   

9.
Abstract Intensive pastoralism with goats transforms semiarid thicket in the Eastern Cape, South Africa from a dense vegetation of tall shrubs to an open landscape dominated by ephemeral grasses and forbs. Approx. 800 000 ha of thicket (which prior to the introduction of goats had a closed canopy and a Portulacaria afra Jacq. component) have been transformed in this manner. Ecosystem C storage in intact thicket and loss of C due to transformation were quantified. Carbon storage in intact thicket was surprisingly high for a semiarid region, with an average of 76 t C ha?1 in living biomass and surface litter and 133 t C ha?1 in soils to a depth of 30 cm. Exceptional C accumulation in thicket may be a result of P. afra dominance. This succulent shrub switches between C3 and CAM photosynthesis, produces large quantities of leaf litter (approx. 450 g m?2 year?1) and shades the soil densely. Transformed thicket had approx. 35% less soil C to a depth of 10 cm and approx. 75% less biomass C than intact thicket. Restoration of transformed thicket landscapes could consequently recoup more than 80 t C ha?1.  相似文献   

10.
Acacia caven (Mol.) Mol. is native to South America. The species is a leguminous, woody small tree that is considered to have certain potential as a managed silvopastoral crop. Six varieties have been described for the species based on both morphological traits and molecular markers. Little information is available on its mating system. The main objectives of this work were to test the hypothesis that A. caven is an outcrosser and to estimate parameters of its mating system and population structure on the basis of isozyme markers. In the four populations studied, a high homozygote excess was found in the progeny population but not in the mother plant genotypes. The estimate for the multi-locus outcrossing rate (t m) was high (??0.957) in all populations, indicating that Acacia caven is a predominantly outcrosser species. The results of genetic structure analysis within each population indicated that differences in allelic frequencies among families in all of the populations studied are highly significant. The difference in F estimates between progeny and mother plants suggests some selection favouring heterozygotes between the seedling and adult stages. Therefore, a strategy for ex situ conservation might emphasise sampling more populations with a relative large number of trees per site.  相似文献   

11.
模拟分类经营对小兴安岭林区森林生物量的影响   总被引:1,自引:0,他引:1  
运用空间直观景观模型LANDIS 7.0 PRO,模拟了在当前采伐模式和无采伐两个预案下,小兴安岭林区森林生物量及主要树种生物量在2000—2200年间的动态。模拟结果如下:(1)无采伐预案下,森林生物量由最初的93.6 t/hm2逐渐升高,90a后达到最大值258 t/hm2,之后森林生物量在245 t/hm2上下小幅波动;(2)前100a采伐预案会明显降低森林生物量,与无采伐预案相比森林生物量最大可降低21.4 t/hm2,平均减少14.7 t/hm2;后100a采伐对森林生物量的影响逐渐减弱,森林生物量平均减少2.6 t/hm2;(3)当前采伐模式促进保护树种红松和紫椴生长,其生物量分别最大可提高9.0 t/hm2和0.53 t/hm2,占到无采伐预案生物量的56%和15%;(4)采伐预案对云冷杉生物量影响较小,主要降低先锋树种(白桦、山杨)和一些阔叶树种(枫桦、春榆)的生物量。研究结果表明现行采伐模式在未来100 a内会显著影响森林生物量,之后其影响逐渐减小,并且保护政策能提高所保护树种(红松、紫椴)的生物量,但要保持较高的总生物量,仍需要降低目前的采伐强度。  相似文献   

12.
The study describes an integrated impact assessment tool for the net carbon dioxide (CO2) exchange in forest production. The components of the net carbon exchange include the uptake of carbon into biomass, the decomposition of litter and humus, emissions from forest management operations and carbon released from the combustion of biomass and degradation of wood‐based products. The tool enables the allocation of the total carbon emissions to the timber and energy biomass and to the energy produced on the basis of biomass. In example computations, ecosystem model simulations were utilized as an input to the tool. We present results for traditional timber production (pulpwood and saw logs) and integrated timber and bioenergy production (logging residues, stumps and roots) for Norway spruce, in boreal conditions in Finland, with two climate scenarios over one rotation period. The results showed that the magnitude of management related emissions on net carbon exchange was smaller when compared with the total ecosystem fluxes; decomposition being the largest emission contributor. In addition, the effects of management and climate were higher on the decomposition of new humus compared with old humus. The results also showed that probable increased biomass growth, obtained under the changing climate (CC), could not compensate for decomposition and biomass combustion related carbon loss in southern Finland. In our examples, the emissions allocated for the energy from biomass in southern Finland were 172 and 188 kg CO2 MW h?1 in the current climate and in a CC, respectively, and 199 and 157 kg CO2 MW h?1 in northern Finland. This study concludes that the tool is suitable for estimating the net carbon exchange of forest production. The tool also enables the allocation of direct and indirect carbon emissions, related to forest production over its life cycle, in different environmental conditions and for alternative time periods and land uses. Simulations of forest management regimes together with the CC give new insights into ecologically sustainable forest bioenergy and timber production, as well as climate change mitigation options in boreal forests.  相似文献   

13.
The disturbance of natural environments affects, among others, the diversity of dung beetle assemblages, which could have serious consequences for the ecological processes regulated by these insects. The objective of this study was to evaluate and compare species diversity and functional groups of dung beetle assemblages both in the native forest and in three livestock systems that differed in their structure and composition of vegetation: a livestock system with native trees, a livestock system with exotic trees (Pinus taeda), and traditional open pastures, in the semideciduous Atlantic forest of Argentina, in an area previously covered by continuous forest and currently with a heterogeneous landscape of native forest and different land uses. Pitfall traps baited with cow dung were used in the natural forests and the livestock systems studied. A total of 2461 beetles belonging to 38 species were captured. Treed livestock systems showed the highest species richness (0D) and diversity (1D and 2D). Twelve functional groups were identified. The native forest showed the highest functional group richness, while open pastures had the lowest. In general, livestock systems showed a low proportional abundance of telecoprid, diurnal and large beetles. Microclimate (average temperature and humidity) and soil conditions (soil composition: sandy or clayey) were closely associated with the species and functional group composition. Results confirm that cattle ranching with tree retention preserves dung beetle diversity, and suggest that cattle systems without canopy cover have higher impact (negative effects) than silvopastoral systems on both species and functional groups.  相似文献   

14.
Research on forest management impact focuses mainly on timber stands, and leaves out the unproductive forest environments. These stands are spatially mixed with timber forests. The objective was to evaluate richness and density of birds in timber Nothofagus pumilio forests and their unproductive associated environments, and discuss forest management implications. These stands showed significant differences in their forest structure, which generate a great variety of ecological environments. A total of 1881 individuals belonging to 30 bird species were observed during the sampling, in spring and summer seasons. These species were mainly migratory and insectivores, Passeriforms being the most important group. From 12 to 17 birds/ha were found, which varied with the forest environments and seasons. Timber stands of Nothofagus pumilio support a low number of bird species. Most of them are opportunistic and a few prefer these woods over other forested or afforested areas. Low bird density and richness characterize these austral forests, which share their diversity with a high variety of ecosystems along Patagonia. Timber N. pumilio forests has a marginal value for bird species conservation, considering its richness, density and the percentage of this forest in the total forested landscape of Tierra del Fuego (Argentina).  相似文献   

15.

The rapid expansion of planted forests harms native biodiversity. Few studies report the effects of replacing wetlands with planted forests on ground beetles. We analyze how the taxonomic and functional diversity of ground beetles are affected by intensive management of a planted forest landscape in the Lower Delta of the Parana River. We defined six habitat types (n?=?3, N?=?18): young and mature willow (YW, MW), young and mature poplar without cattle (YP, MP), young and mature silvopastoral poplar (YS, MS). Using pitfall traps (N?=?1728), we recorded 35 species (1896 individuals). YW and MS reached the highest taxonomic diversity and richness. YW with more vertical heterogeneity showed higher species richness than MW. Hydrophilic species were more abundant in YW. Zoophagous species were more abundant in MS. YS, MS, and YW reached the highest functional evenness, which implies that a large part of the functional niches was used. Cattle dung and freshwater canals for livestock offer more resources for ground beetles. The planted tree species, stand age, and presence of cattle affects taxonomic and functional diversity of ground beetles. Willow and silvopastoral planted forests are the most suitable habitats for hosting wetland species. So, we recommend using willow species rather than poplar species when planted forests replace fluvial wetlands, increasing irrigation of poplar planted forests through ditches and canals, conserving or restoring different strata of understory to increase vertical heterogeneity, and maintaining the landscape heterogeneity. These management measures are essential to prevent the loss of wetland species and conserve ground beetle’s diversity.

  相似文献   

16.
We used ecosystem model simulations to study the timber and energy biomass potential offered by intensively managed cloned Norway spruce stands. More specifically, we analysed how the use of cloned trees compared with non‐cloned trees, together with thinning, nitrogen (N) fertilisation and rotation length (from 60 to 100 years), affects the annual mean production of timber (i.e., saw logs, pulpwood) and energy biomass (i.e., stumps and harvesting residuals in the final felling) and its economic profitability [annual mean of net present value (NPV) with a 2% interest rate]. Furthermore, we employed a life cycle analysis/emission calculation tool to assess the total net CO2 emissions per unit of energy (kg CO2 MW h?1) produced based on energy biomass. We found that both the annual mean production of timber and the NPV increased substantially, regardless of the management regime, if cloned trees with an annual growth increase of up to 30% compared with non‐cloned trees were used in regeneration. In general, the use of a short rotation with N fertilisation clearly increased the annual mean of the NPV. Consequently, the use of cloned trees also clearly increased the annual mean production of energy biomass and decreased the total net CO2 emissions per unit of energy produced based on energy biomass. However, the total annual net CO2 emissions were the lowest if a long rotation was used with N fertilisation. To conclude, the use of cloned trees together with intensive management could potentially be highly beneficial for the cost‐efficient and sustainable production of timber and energy biomass in an integrated way.  相似文献   

17.
Initiating Autogenic Restoration on Shallow Semiarid Sites   总被引:1,自引:0,他引:1  
Our objectives were to evaluate the use of microcatchments in the establishment of Leucaena retusa (little-leaf leadtree) and Atriplex canescens (four-wing saltbush) and their role in the initiation of autogenic landscape restoration processes on a shallow semiarid site. Three six-month-old seedlings of either Leucaena retusa or Atriplex canescens were planted in 1.5-m2 microcatchments. An equal number of seedlings was planted in control plots (unmodified soil surface). The water collection effects on shrub survival, standing biomass, and the natural immigration of herbaceous vegetation were determined over 42 months. Planting in microcatchment basins doubled Leucaena seedling survival and resulted in a five-fold increase in standing biomass, compared to the control, during the first growing season. There was a significant increase in soil organic matter in the microcatchment basins within 32 months. At the same time, microcatchments planted with Atriplex canescens seedlings had a ten-fold increase in seedling standing biomass compared to the control. Forty-two months after transplanting, the herbaceous standing crop was significantly greater near Atriplex canescens or in microcatchment basins than in plots with unmodified surface soil. Basins containing Atriplex produced significantly more herbaceous vegetation than basins containing Leucaena, and empty basins produced the least herbaceous vegetation of three basin treatments. These data suggest that landscape-scale procedures that concentrate scarce resources (water, organic matter, nutrients, and propagules), establish keystone species, and ameliorate microenvironmental conditions can initiate autogenic restoration of degraded semiarid ecosystems.  相似文献   

18.
The biochar is an important carbon-rich product that is generated from biomass sources through pyrolysis. Biochar (charcoal) can be both used directly as a potential source of solid biofuels and as soil amendments for barren lands. The aim of this study was investigate influence of pyrolysis temperature on the physicochemical properties and structure of biochar. The biochars were produced by pyrolysis of rapeseed (Brassica napus L.) using a fixed-bed reactor at different pyrolysis temperatures (400–700°C). The produced biochars were characterized by proximate and elemental analysis, Brunauer–Emmett–Teller (BET) surface area, particle size distributions, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy. The results showed that both chemical and surface properties of the biochars were significantly affected by the pyrolysis temperature. Aromatic hydrocarbons, hydroxyl and carbonyl compounds were the majority components of the biochar. The biochar obtained at 700°C had a high fixed carbon content (66.16%) as well as a high heating value, and therefore it could be used as solid fuel, precursor in the activated carbons manufacture (specific surface area until 25.38 m2 g?1), or to obtain category-A briquettes.  相似文献   

19.
The silvicultural management of Scottish birch woodlands for timber production is replacing traditional low intensity management practices, such as domesticated livestock grazing. These new management practices involve thinning of existing woodlands to prescribed densities to maximize biomass and timber quality. Although presently infrequent, the wide scale adoption of this practice could affect invertebrate community diversity. The impact of these changes in management on Staphylinidae andCarabidae(Coleoptera) in 19 woodlands in Aberdeenshire, north-east Scotland was investigated. Grazing and logging practices were important determinants of beetle community structure. Woodland area had no effect on any measure of beetle community structure, although isolation did influence the abundance of one carabid species. Changes towards timber production forestry will influence the structure of invertebrate communities, although the scale at which this occurs will determine its effect.  相似文献   

20.
土壤中镉(Cd)含量的超标导致了土壤生态系统的恶性发展,微生物作为土壤中的常见组分之一在缓解土壤镉污染中展现出巨大潜力。本文总结了微生物、微生物-植物和微生物-生物炭在镉污染土壤修复中的应用并阐述了相关的作用机理。芽孢杆菌(Bacillus)、不动杆菌(Acinetobacter)、荧光假单胞菌(Pseudomonas fluorescence)、丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)等微生物可以通过吸附、矿化、沉淀、溶解等方式改变镉的生物有效性,从而达到缓解镉污染的目的。pH值、温度、微生物生物量、镉初始浓度以及时间等对微生物降低镉的生物有效性方面有着显著的影响。假单胞菌、伯克霍尔德菌(Burkholderia)、黄杆菌(flavobacterium)等微生物可以通过促生、活化等作用促进超富集植物对Cd2+的吸收。生物炭作为一种土壤改良剂,其独有的理化性质可以作为微生物的庇护所。微生物-生物炭联合使用与单用生物炭相比可以进一步促进镉的残渣态的增加,降低土壤中有效态的比例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号