首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cyanobacteria comprise an extraordinarily diverse group of microorganisms and, as revealed by increasing molecular information, this biodiversity is even more extensive than previously estimated. In this sense, the cyanobacterial genus Lyngbya is a highly polyphyletic group composed of many unrelated taxa with morphological similarities. In this study, the new genus Dapis was erected from the genus Lyngbya, based on a combined molecular, chemical, and morphological approach. Herein, two new species of cyanobacteria are described: D. pleousa and D. pnigousa. Our analyses found these species to be widely distributed and abundant in tropical and subtropical marine habitats. Seasonally, both species have the ability to form extensive algal blooms in marine habitats: D. pleousa in shallow‐water, soft bottom habitats and D. pnigousa on coral reefs below depths of 10 m. Electron microscopy showed that D. pleousa contains gas vesicles, a character not previously reported in Lyngbya. These gas vesicles, in conjunction with a mesh‐like network of filaments that trap oxygen released from photosynthesis, provide this species with an unusual mechanism to disperse in coastal marine waters, allowing D. pleousa to be present in both benthic and planktonic forms. In addition, both D. pleousa and D. pnigousa contained nitrogen‐fixing genes as well as bioactive secondary metabolites. Several specimens of D. pnigousa biosynthesized the secondary metabolite lyngbic acid, a molecule that has also been isolated from many other marine cyanobacteria. Dapis pleousa consistently produced the secondary metabolite malyngolide, which may provide a promising chemotaxonomic marker for this species.  相似文献   

4.
Asiatic shrewlike moles are distributed almost entirely in south‐west China; four of the five species of the genus Uropsilus, Uropsilus aequodonenia, Uandersoni, Uinvestigator and Usoricipes are endemic to China. Excluding the five species, three cryptic species (U. sp. 1, U. sp. 2 and U. sp. 3) and two putative species, Univatus and Uatronates, are recognized. The phylogenetic relationships among the species remain unclear and these preclude investigations of their potential adaptations for living in high altitudes. We sequenced the complete mitochondrial DNA genomes of three species of Asiatic shrewlike moles (Uaequodonenia, Uandersoni and Univatus). Phylogenetic analyses of 16 published and our de novo mitogenomes yield single, robust trees with the relationships being (Usoricipes (U. sp. 1 (Univatus (Uandersoni, Uaequodonenia)))). Further, the tree verifies the validity of recently described Uaequodonenia. Analyses of selection pressure suggest that the 13 mtDNA‐encoding genes of species in the genus Uropsilus all have experienced strong purifying selection, although ATP8 accumulated a higher ratio of non‐synonymous substitutions than the other loci, which might reflect adaptation of the genus Uropsilus to different environments/elevations.  相似文献   

5.
We examined a cranial morphometric data set consisting of 186 specimens from the entire distribution range of Ochotona pallasii sensu lato and O. argentata, as well as 67 complete sequences of the COI gene and 28 sequences of the MGF and PRKCI introns from these and closely allied species. Our results show that the two allopatric morphologically similar taxa composing Opallasii sensu lato – from Mongolia and adjacent territories and Kazakhstan – are paraphyletic relative to O. argentata. Genetic distances between these three taxa are larger than the intraspecific variation known for the subgenus Pika, in which the species under consideration belong; these distances are even larger than the interspecific differences among closely related species such as O. hyperborea, O. mantchurica and O. hoffmanni. Thus, the three focal taxa are recognized here as distinct species. Inspection of the type specimen of Opallasii indicated that this specimen was not collected in Kazakhstan, has previously been theorized. The most probable place of the holotype's origin is Russian south‐eastern Altai (Chuyskaya Steppe); whatever its exact origin, it definitively originates from the ‘Mongolian’ taxon. Based on this evidence, the senior synonym for the Kazakh pika is O. opaca Argyropulo, 1930. Thus, we propose to recognize three separate species in the Opallasii species group: Opallasii (Mongolia and adjacent territories), O. opaca (eastern Kazakhstan) and O. argentata (Helan Shan Range, China).  相似文献   

6.
The classical athecate dinoflagellate genera (Amphidinium, Gymnodinium, Gyrodinium) have long been recognized to be polyphyletic. Amphidinium sensu lato is the most diverse of all marine benthic dinoflagellate genera; however, following the redefinition of this genus ~100 species remain now of uncertain or unknown generic affiliation. In an effort to improve our taxonomic and phylogenetic understanding of one of these species, namely Amphidinium semilunatum, we re‐investigated organisms from several distant sites around the world using light and scanning electron microscopy and molecular phylogenetic methods. Our results enabled us to describe this species within a new heterotrophic genus, Ankistrodinium. Cells of A. semilunatum were strongly laterally flattened, rounded‐quadrangular to oval in lateral view, and possessed a small asymmetrical epicone. The sulcus was wide and characteristically deeply incised on the hypocone running around the antapex and reaching the dorsal side. The straight acrobase with hook‐shaped end started at the sulcal extension and continued onto the epicone. The molecular phylogenetic results clearly showed that A. semilunatum is a distinct taxon and is only distantly related to species within the genus Amphidinium sensu stricto. The nearest sister group to Ankistrodinium could not be reliably determined.  相似文献   

7.
A survey was conducted to identify fungi associated with leaf diseases of ornamental herbs, including Christ plant, dracaena, rose geranium, rose periwinkle and treasure flower, in Ahvaz, southwestern Iran. Twenty‐five symptomatic herbs were collected and studied, which led to the isolation of seven Phoma‐like strains belonging to four taxa. These fungi were characterised based on DNA sequence data for the partial large subunit 28S nrDNA (LSU‐D1/D2), the internal transcribed spacer 1 and 2 and 5.8S nrDNA (ITS) and part of the β‐tubulin (tub2) gene regions. A multi‐locus‐based phylogeny, in combination with morphology, allowed for the identification of Allophoma hayatii, A. labilis, A. tropica and a novel species of the genus Ectophoma. Ectophoma iranica sp. nov. is morphologically and genetically distinctive from previously described species. In pathogenicity tests, the two strains of E. iranica (CBS 144681 and IRAN 3354C) caused leaf spot symptoms on leaves of Catharanthus roseus. New host plant species and records for A. hayatii, A. labilis and A. tropica are reported, plus further emended characterization of A. hayatii.  相似文献   

8.
9.
Few species in the genus Grateloupia have been investigated in detail with respect to the development of the auxiliary cell ampullae before or after diploidization. In this study, we document the vegetative and reproductive structures of two new species of Grateloupia, G. taiwanensis S.‐M. Lin et H.‐Y. Liang sp. nov. and G. orientalis S.‐M. Lin et H.‐Y. Liang sp. nov., plus a third species, G. ramosissima Okamura, from Taiwan. Two distinct patterns are reported for the development of the auxiliary cell ampullae: (1) ampullae consisting of three orders of unbranched filaments that branch after diploidization of the auxiliary cell and form a pericarp together with the surrounding secondary medullary filaments (G. taiwanensis type), and (2) ampullae composed of only two orders of unbranched filaments in which only a few cells are incorporated into a basal fusion cell after diploization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments (G. orientalis type). G. orientalis is positioned in a large clade based on rbcL gene sequence analysis that includes the type species of Grateloupia C. Agardh 1822 , Gfilicina. G. taiwanensis clusters with a clade that includes the generitype of Phyllymenia J. Agardh 1848 , Ph. belangeri from South Africa; that of Prionitis J. Agardh 1851 , Prlanceolata from Pacific North America; and that of Pachymeniopsis Y. Yamada ex Kawab. 1954, Palanceolata from Japan. A reexamination of the type species of the genera Grateloupia, Phyllymenia, Prionitis, and Pachymeniopsis is required to clarify the generic and interspecific relationships among the species presently placed in Grateloupia.  相似文献   

10.
Spiny‐backed tree frogs of the genus Osteocephalus are conspicuous components of the tropical wet forests of the Amazon and the Guiana Shield. Here, we revise the phylogenetic relationships of Osteocephalus and its sister group Tepuihyla, using up to 6134 bp of DNA sequences of nine mitochondrial and one nuclear gene for 338 specimens from eight countries and 218 localities, representing 89% of the 28 currently recognized nominal species. Our phylogenetic analyses reveal (i) the paraphyly of Osteocephalus with respect to Tepuihyla, (ii) the placement of ‘Hyla’ warreni as sister to Tepuihyla, (iii) the non‐monophyly of several currently recognized species within Osteocephalus and (iv) the presence of low (<1%) and overlapping genetic distances among phenotypically well‐characterized nominal species (e.g. O. taurinus and O. oophagus) for the 16S gene fragment used in amphibian DNA barcoding. We propose a new taxonomy, securing the monophyly of Osteocephalus and Tepuihyla by rearranging and redefining the content of both genera and also erect a new genus for the sister group of Osteocephalus. The colouration of newly metamorphosed individuals is proposed as a morphological synapomorphy for Osteocephalus. We recognize and define five monophyletic species groups within Osteocephalus, synonymize three species of Osteocephalus (O. germani, O. phasmatus and O. vilmae) and three species of Tepuihyla (T. celsae, T. galani and T. talbergae) and reallocate three species (Hyla helenae to Osteocephalus, O. exophthalmus to Tepuihyla and O. pearsoni to Dryaderces gen. n.). Furthermore, we flag nine putative new species (an increase to 138% of the current diversity). We conclude that species numbers are largely underestimated, with most hidden diversity centred on widespread and polymorphic nominal species. The evolutionary origin of breeding strategies within Osteocephalus is discussed in the light of this new phylogenetic hypothesis, and a novel type of amplexus (gular amplexus) is described.  相似文献   

11.
Xanthomonas campestris pv. campestris (Xcc) is a phytopathogenic bacteria, and it is the causative agent of black rot in crucifers. Recent studies have shown that Bacillus species have strong biological control on Xanthomonas. One of the mechanisms of this control is secondary metabolites production. A collection of 257 bacteria isolated from a suppressive soil was evaluated for in vitro antagonistic activity against X. campestris, and 92 isolates (44.6%) were able to inhibit its growth. Among the 92 isolates evaluated in the double‐layer technique, 51 (55.43%) inhibited Xcc growth on the inhibition tests with cell‐free filtrates (CFF) in liquid medium. Thirteen of these isolates presented 50% or more growth inhibition, and five isolates presented 100% growth inhibition of Xcc. The CFF of the isolate TCDT‐08, which belongs to the Paenibacillus genus, was used for in vivo tests with kale crops. The artificial inoculation of kale with Xcc‐629IBSBF pretreated with CFF from the isolate TCDT‐08 demonstrated that the bacterium loses the ability of colonizing kale and of causing black rot. A Paenibacillus sp. isolate has strong inhibitory activity against X. campestris pv. campestris, and further studies can result in the use of this isolate to protect kale from Xcc infection.  相似文献   

12.
Sponges are among the most species‐rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model‐based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single‐copy nuclear protein‐coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax, C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera, C. longissima, C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model‐based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges.  相似文献   

13.
The mouse opossums of the genus Thylamys constitute a group of species mainly adapted to open xeric‐like habitats and restricted to the southern portion of South America. We used molecular data (mitochondrial and nuclear sequences) to evaluate the phylogenetic and biogeographical relationships of all currently known living species of the genus, recognizing a new taxon from the middle and high elevations of the Peruvian Andes and evaluating the phylogenetic structuring within T. pallidior and T. elegans, as well as the validity of T. sponsorius, T. cinderella and T. tatei, and the haplogroups recognized within T. pusillus. Our results confirm the monophyly of the genus and that the Caatinga and the Cerrado inhabitants Thylamys karimii and T. velutinus are the most basal species in the radiation of Thylamys. We also calibrated a molecular clock which hypothesized a time of origin of the genus of about 24 My, with most species differentiating in middle and late Miocene and Plio‐Pleistocene times of South America.  相似文献   

14.
The genus Glauconycteris Dobson, 1875 currently contains 12 species of butterfly bats, all endemic to sub‐Saharan Africa. Most species are rarely recorded, with half of the species known from less than six geographic localities. The taxonomic status of several species remains problematic. Here, we studied the systematics of butterfly bats using both morphological and molecular approaches. We examined 45 adult specimens for external anatomy and skull morphology, and investigated the phylogeny of Glauconycteris using DNA sequences from three mitochondrial genes and 116 individuals, which in addition to outgroup taxa, included nine of the twelve butterfly bat species currently recognized. Four additional nuclear genes were sequenced on a reduced sample of 69 individuals, covering the outgroup and Glauconycteris species. Our molecular results show that the genus Glauconycteris is monophyletic, and that it is the sister‐group of the Asian genus Hesperoptenus. Molecular dating estimates based on either Cytb or RAG2 data sets suggest that the ancestor of Glauconycteris migrated into Africa from Asia during the Tortonian age of the Late Miocene (11.6–7.2 Mya), while the basal diversification of the crown group occurred in Africa at around 6 ± 2 Mya. The species G. superba is found to be the sister‐group of G. variegata, questioning its placement in the recently described genus Niumbaha. The small species living in tropical rainforests constitute a robust clade, which contains three divergent lineages: (i) the “poensis” group, which is composed of G. poensis, G. alboguttata, G. argentata, and G. egeria; (ii) the “beatrix” group, which contains G. beatrix and G. curryae; and (iii) the “humeralis” group, which includes G. humeralis and a new species described herein. In the “poensis” group, G. egeria is found to be monophyletic in the nuclear tree, but polyphyletic in the mitochondrial tree. The reasons for this mito‐nuclear discordance are discussed.  相似文献   

15.
16.
Abstract The wasp family Rhopalosomatidae is represented in Australia only by the genus Olixon Cameron. Species of this genus have previously been considered rare based on material in collections and have rarely been observed in the field. All known species of Olixon are brachypterous, solitary ectoparasitoids of crickets (Orthoptera: Gryllidae). Prior to our study the world fauna comprised 11 species of which two were endemic to north‐eastern Australia. Based on specimens collected during recent intensive surveys in Australia we record 17 species for the continent. Fifteen of these species are described as new, which more than doubles the world fauna of Olixon: Olixon abrahami, O. danggari, O. ferrugineum, O. guyim, O. harveyi, O. helgae, O. jandakotae, O. jawoyn, O. jenningsi, O. kakadui, O. pilbara, O. wajuk, O. waldockae, O. wuthathi and O. zonale spp.n . Females of Olixon australiae Perkins and Olixon flavibase Townes are redescribed, and the male of O. flavibase is described for the first time. A key is provided for all 17 Australian species and their distribution is discussed. Results of a cladistic analysis of the world species of Olixon based on 41 morphological characters for 24 ingroup species are presented. The results obtained from equal and implied weighting parsimony analyses indicate that: (i) the Australian species of Olixon are not monophyletic, (ii) about three‐quarters of the Australian species form a monophyletic group, and (iii) a Central/South American Olixon is sister to all other species. The implications of these results for the biogeography of world Olixon species are briefly discussed.  相似文献   

17.
Wittrockiella is a small genus of filamentous green algae that occurs in habitats with reduced or fluctuating salinities. Many aspects of the basic biology of these algae are still unknown and the phylogenetic relationships within the genus have not been fully explored. We provide a phylogeny based on three ribosomal markers (ITS, LSU, and SSU rDNA) of the genus, including broad intraspecific sampling for W. lyallii and W. salina, recommendations for the use of existing names are made, and highlight aspects of their physiology and life cycle. Molecular data indicate that there are five species of Wittrockiella. Two new species, W. australis and W. zosterae, are described, both are endophytes. Although W. lyallii and W. salina can be identified morphologically, there are no diagnostic morphological characters to distinguish between W. amphibia, W. australis, and W. zosterae. A range of low molecular weight carbohydrates were analyzed but proved to not be taxonomically informative. The distribution range of W. salina is extended to the Northern Hemisphere as this species has been found in brackish lakes in Japan. Furthermore, it is shown that there are no grounds to recognize W. salina var. kraftii, which was described as an endemic variety from a freshwater habitat on Lord Howe Island, Australia. Culture experiments indicate that W. australis has a preference for growth in lower salinities over full seawater. For W. amphibia and W. zosterae, sexual reproduction is documented, and the split of these species is possibly attributable to polyploidization.  相似文献   

18.
Cyanobacterial diversity associated with sponges remains underestimated, though it is of great scientific interest in order to understand the ecology and evolutionary history of the symbiotic relationships between the two groups. Of the filamentous cyanobacteria, the genus Leptolyngbya is the most frequently found in association with sponges as well as the largest and obviously polyphyletic group. In this study, five Leptolyngbya‐like sponge‐associated isolates were investigated using a combination of molecular, chemical, and morphological approach and revealed a novel marine genus herein designated Leptothoe gen. nov. In addition, three new species of Leptothoe, Le. sithoniana, Le. kymatousa, and Le. spongobia, are described based on a suite of distinct characters compared to other marine Leptolyngbyaceae species/strains. The three new species, hosted by four sponge species, showed different degrees of host specificity. Leptothoe sithoniana and Le. kymatousa hosted by the sponges Petrosia ficiformis and Chondrilla nucula, respectively, seem to be more specialized than Le. spongobia, which was hosted by the sponges Dysidea avara and Acanthella acuta. All three species contained nitrogen‐fixing genes and may contribute to the nitrogen budget of sponges. Leptothoe spongobia TAU‐MAC 1115 isolated from Acanthella acuta was shown to produce microcystin‐RR indicating that microcystin production among marine cyanobacteria could be more widespread than previously determined.  相似文献   

19.
Accurate species delimitation is important as species are a fundamental unit in ecological, evolutionary and conservation biology research. In lichenized fungi, species delimitation has been difficult due to a lack of taxonomically important characteristics and due to the limits of traditional, morphology‐based species concepts. In this study we reassess the current taxonomy of the Parmotrema perforatum group, which recognizes six closely related species divided into three species pairs, each pair comprising one apotheciate (sexual) and one sorediate (asexual) species. Each pair is further characterized by a distinct combination of secondary metabolites. It was hypothesized that the three apotheciate species are reproductively isolated sibling species and that each sorediate species evolved once from the chemically identical apotheciate species. In this study, species boundaries were re‐examined using an integrative approach incorporating morphological, chemical and molecular sequence data to delimit species boundaries. Phylogenetic trees were inferred from a seven‐locus DNA sequence dataset using concatenated gene tree and coalescent‐based species‐tree inference methods. Furthermore, we employed a multi‐species coalescent method to validate candidate species. Micromorphological measurements of conidia were found to be congruent with phylogenetic clusters. Each approach that we applied to the P. perforatum group consistently recovered four of the currently circumscribed species (P. perforatum, P. hypotropum, P. subrigidum and P. louisianae), whereas P. preperforatum and P. hypoleucinum were consistently combined and are thus interpreted as conspecific.  相似文献   

20.
We confirmed the monophyly of the Agaraceae based on phylogenetic analyses of six mitochondrial and six chloroplast gene sequences from Agarum, Costaria, Dictyoneurum, and Thalassiophyllum species, as well as representative species from other laminarialean families. However, the genus Agarum was paraphyletic, comprising two independent clades, A. clathratum/A. turneri and A. fimbriatum/A. oharaense. The latter clade was genetically most closely related to Dictyoneurum spp., and morphologically, the species shared a flattened stipe bearing fimbriae (potential secondary haptera) in the mid‐ to upper portion. The phylogenetic position of Thalassiophyllum differed between the two datasets: in the chloroplast gene phylogeny, Thalassiophyllum was included in the A. clathratum/A. turneri clade, but in the mitochondrial gene phylogeny, it formed an independent clade at the base of the Agaraceae, the same position it took in the phylogeny when the data from both genomes were combined despite a larger number of bp being contributed by the chloroplast gene sequences. Considering the remarkable morphological differences between Thalassiophyllum and other Agaraceae, and the molecular support, we conclude that Thalassiophyllum should be reinstated as an independent genus. Dictyoneurum reticulatum was morphologically distinguishable from D. californicum due to its midrib, but because of their close genetic relationship, further investigations are needed to clarify species‐level taxonomy. In summary, we propose the establishment of a new genus Neoagarum to accommodate A. fimbriatum and A. oharanese and the reinstatement of the genus Thalassiophyllum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号