共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations affecting the glycogen biosynthesis in E. coli can be mapped at three different loci, glg A, glg B and glg C lying between asd and mal A. Transduction tests suggest the following order for the genes in this region: mal A--glg A--glg C--glg B--asd. 相似文献
3.
Martin Macouzet Normand Robert Byong H. Lee 《Applied microbiology and biotechnology》2010,87(5):1737-1742
While the remarkable health effects of conjugated linoleic acid (CLA) catalyzed from α-linoleic acid by the enzyme linoleate
isomerase (LI, EC 5.2.1.5) are well recognized, how widely this biochemical activity is present and the mechanisms of its
regulation in lactic acid bacteria are unknown. Although certain strains of Lactobacillus acidophilus can enrich CLA in fermented dairy products, it is unknown if other strains share this capacity. Due to its immense economic
importance, this work aimed to investigate genetic aspects of CLA production in L. acidophilus for the first time. The genomic DNA from industrial and type strains of L. acidophilus were subjected to PCR and immunoblot analyses using the putative LI gene of L. reuteri ATCC 55739 as probe. The CLA production ability was estimated by gas chromatography of the biomass extracts. The presumptive
LI gene from L. acidophilus ATCC 832 was isolated and sequenced. The resulting sequence shared 71% identity with that of L. reuteri and at least 99% with reported sequences from other L. acidophilus strains. All the strains accumulated detectable levels of CLA and tested positive by PCR and immunoblotting. However, no
apparent correlation was observed between the yields and the hybridization patterns. The results suggest that LI activity
might be common among L. acidophilus and related species and provide a new tool for screening potential CLA producers. 相似文献
4.
5.
6.
7.
8.
9.
10.
11.
Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation 总被引:7,自引:1,他引:7
Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 on the B. subtilis chromosome, it encodes five poly-peptides with extensive similarity to enzymes involved in glycogen and starch metabolism in both prokaryotes and eukaryotes. The operon is presumably expressed by an EσE-controlled promoter, which was previously identified downstream from trnB. We have observed glycogen biosynthesis in B. subtilis exclusively on media containing carbon sources that allow efficient sporulation. Sporulation-independent synthesis of glycogen occurred after integration of an EσA controlled promoter upstream of the operon. 相似文献
12.
Buck BL Altermann E Svingerud T Klaenhammer TR 《Applied and environmental microbiology》2005,71(12):8344-8351
Lactobacilli are major inhabitants of the normal microflora of the gastrointestinal tract, and some select species have been used extensively as probiotic cultures. One potentially important property of these organisms is their ability to interact with epithelial cells in the intestinal tract, which may promote retention and host-bacterial communication. However, the mechanisms by which they attach to intestinal epithelial cells are unknown. The objective of this study was to investigate cell surface proteins in Lactobacillus acidophilus that may promote attachment to intestinal tissues. Using genome sequence data, predicted open reading frames were searched against known protein and protein motif databases to identify four proteins potentially involved in adhesion to epithelial cells. Homologous recombination was used to construct isogenic mutations in genes encoding a mucin-binding protein, a fibronectin-binding protein, a surface layer protein, and two streptococcal R28 homologs. The abilities of the mutants to adhere to intestinal epithelial cells were then evaluated in vitro. Each strain was screened on Caco-2 cells, which differentiate and express markers characteristic of normal small-intestine cells. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant (76%) and the mucin-binding protein mutant (65%). A surface layer protein mutant also showed reduction in adhesion ability (84%), but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer. This study demonstrated that multiple cell surface proteins in L. acidophilus NCFM can individually contribute to the organism's ability to attach to intestinal cells in vitro. 相似文献
13.
14.
Jules Beekwilder Daniela Marcozzi Samuele Vecchi Ric de Vos Patrick Janssen Christof Francke Johan van Hylckama Vlieg Robert D. Hall 《Applied and environmental microbiology》2009,75(11):3447-3454
Lactobacilli are known to use plant materials as a food source. Many such materials are rich in rhamnose-containing polyphenols, and thus it can be anticipated that lactobacilli will contain rhamnosidases. Therefore, genome sequences of food-grade lactobacilli were screened for putative rhamnosidases. In the genome of Lactobacillus plantarum, two putative rhamnosidase genes (ram1Lp and ram2Lp) were identified, while in Lactobacillus acidophilus, one rhamnosidase gene was found (ramALa). Gene products from all three genes were produced after introduction into Escherichia coli and were then tested for their enzymatic properties. Ram1Lp, Ram2Lp, and RamALa were able to efficiently hydrolyze rutin and other rutinosides, while RamALa was, in addition, able to cleave naringin, a neohesperidoside. Subsequently, the potential application of Lactobacillus rhamnosidases in food processing was investigated using a single matrix, tomato pulp. Recombinant Ram1Lp and RamALa enzymes were shown to remove the rhamnose from rutinosides in this material, but efficient conversion required adjustment of the tomato pulp to pH 6. The potential of Ram1Lp for fermentation of plant flavonoids was further investigated by expression in the food-grade bacterium Lactococcus lactis. This system was used for fermentation of tomato pulp, with the aim of improving the bioavailability of flavonoids in processed tomato products. While import of flavonoids into L. lactis appeared to be a limiting factor, rhamnose removal was confirmed, indicating that rhamnosidase-producing bacteria may find commercial application, depending on the technological properties of the strains and enzymes.Lactobacilli such as Lactobacillus plantarum have been used for centuries to ferment vegetables such as cabbage, cucumber, and soybean (34). Fruit pulps, for instance, those from tomato, have also been used as a substrate for lactobacilli for the production of probiotic juices (38). Recently, the full genomic sequences of several lactobacilli have become available (1, 22). A number of the plant-based substrates for lactobacilli are rich in rhamnose sugars, which are often conjugated to polyphenols, as in the case of cell wall components and certain flavonoid antioxidants. Utilization of these compounds by lactobacilli would involve α-l-rhamnosidases, which catalyze the hydrolytic release of rhamnose. Plant-pathogenic fungi such as Aspergillus species produce the rhamnosidases when cultured in the presence of naringin, a rhamnosilated flavonoid (24, 26). Bacteria such as Bacillus species have also been shown to use similar enzyme activities for metabolizing bacterial biofilms which contain rhamnose (17, 40).In food processing, rhamnosidases have been applied primarily for debittering of citrus juices. Part of the bitter taste of citrus is caused by naringin (Fig. (Fig.1),1), which loses its bitter taste upon removal of the rhamnose (32). More recently, application of rhamnosidases for improving the bioavailability of flavonoids has been described. Human intake of flavonoids has been associated with a reduced risk of coronary heart disease in epidemiological studies (19). Food flavonoids need to be absorbed efficiently from what we eat in order to execute any beneficial function. Absorption occurs primarily in the small intestine (12, 37). Unabsorbed flavonoids will arrive in the colon, where they will be catabolized by the microflora, which is then present in huge quantities. Therefore, it would be desirable for flavonoids to be consumed in a form that is already optimal for absorption in the small intestine prior to their potential degradation. For the flavonoid quercetin, it has been demonstrated that the presence of rhamnoside groups inhibits its absorption about fivefold (20). A number of flavonoids which are present in frequently consumed food commodities, such as tomato and citrus products, often carry rutinoside (6-β-l-rhamnosyl-d-glucose) or neohesperidoside (2-β-l-rhamnosyl-d-glucose) residues (Fig. (Fig.1).1). Therefore, removal of the rhamnose groups from such flavonoid rutinosides and neohesperidosides prior to consumption could enhance their intestinal absorption. With this aim, studies were recently carried out toward the application of fungal enzyme preparations as a potential means to selectively remove rhamnoside moieties (16, 30).Open in a separate windowFIG. 1.Chemical structures of rhamnose-containing flavonoids from plants. Relevant carbon atoms in glycoside moieties are numbered. (1) Rutin (quercetin-3-glucoside-1→6-rhamnoside); (2) narirutin (naringenin-7-glucoside-1→6-rhamnoside); (3) naringin (naringenin-7-glucoside-1→2-rhamnoside); (4) p-nitrophenol-rhamnose.In view of the frequent occurrence of lactobacilli on decaying plant material and fermented vegetable substrates, one could anticipate that their genomes carry one or more genes encoding enzymes capable of utilizing rhamnosilated compounds. In the work reported here, we describe the identification of three putative rhamnosidase genes in lactobacillus genomes. We expressed these genes in Escherichia coli and characterized their gene products. The activities of all three lactobacillus rhamnosidases on flavonoids naturally present in tomato pulp were then assessed. One of the L. plantarum genes, which encoded the enzyme with the highest activity and stability in E. coli, was then also expressed in Lactococcus lactis, with the aim of investigating the potential use of such a recombinant organism to improve the bioavailability of fruit flavonoids and thus their efficacy in common foodstuffs. 相似文献
15.
16.
Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. 总被引:10,自引:5,他引:10 下载免费PDF全文
Sixteen strains of Lactobacillus reuteri and 20 strains of Lactobacillus acidophilus were tested for resistance to 22 antibiotics by using commercially available sensitivity disks. Evidence suggesting linkage of these resistances to plasmids was obtained by "curing" experiments with acridine dyes and high growth temperatures. Examination of plasmid patterns of agarose gel electrophoresis provided further evidence of loss in plasmid DNA under curing conditions in some of the strains examined. 相似文献
17.
The response of Lactobacillus acidophilus CRL 639 to cold-shock (freezing) depends on the initial growth temperature. Cells cultured at 25°C (long filaments with a value of 0.02 h–1) show a higher -galactosidase activity and develop cryotolerance, compared with cells grown at 37°C. One-dimensional proteins gel electrophoresis shows the over-expression of six proteins (22.5–105.0 kDa) and the repression of eight proteins (4.3–48.0 kDa) at 25°C. © Rapid Science Ltd. 1998 相似文献
18.
The structure of the crystallisation domain, SAN, of the S(A)-protein of Lactobacillus acidophilus ATCC 4356 was analysed by insertion and deletion mutagenesis, and by proteolytic treatment. Mutant S(A)-protein synthesised in Escherichia coli with 7-13 amino acid insertions near the N terminus or within regions of sequence variation in SAN (amino acid position 7, 45, 114, 125, 193), or in the cell wall-binding domain (position 345) could form crystalline sheets, whereas insertions in conserved regions or in regions with predicted secondary structure elements (positions 30, 67, 88 and 156) destroyed this capacity. FACscan analysis of L.acidophilus synthesising three crystallising and one non-crystallising S(A)-protein c-myc (19 amino acid residues) insertion mutant was performed with c-myc antibodies. Fluorescence was most pronounced for insertions at positions 125 and 156, less for position 45 and severely reduced for position 7. By cytometric flow sorting a transformant harbouring the mutant S(A)-protein gene (position 125) was isolated that showed an increased fluorescense signal. Immunofluorescence microscopy suggested that the transformant synthesized mutant S(A)-protein only. PCR analysis of the transformant grown in the absence of selection pressure indicated that the mutant allele was stably integrated in the chromosome. Proteolytic treatment of S(A)-protein indicated that only sites near the middle of SAN are susceptible, although potential cleavage sites are present through the entire molecule. Expression in E.coli of DNA sequences encoding the two halves of SAN yielded peptides that could oligomerize. Our results indicate that SAN consists of a approximately 12kDa N and a approximately 18kDa C-terminal subdomain linked by a surface exposed loop. The capacity of S(A)-protein of L.acidophilus to present epitopes, up to approximately 19 amino acid residues in length, at the bacterial surface in a genetically stable form, makes the system, in principle, suitable for application as an oral delivery vehicle. 相似文献
19.
20.
Lactobacillus acidophilus NCFM is a probiotic microbe that survives passage through the human gastrointestinal tract and interacts with the host epithelium and mucosal immune cells. The potential for L. acidophilus to express antigens at mucosal surfaces has been investigated with various antigens and plasmid expression vectors. Plasmid instability and antibiotic selection complicate the possibility of testing these constructs in human clinical trials. Integrating antigen encoding genes into the chromosome for expression is expected to eliminate selection requirements and provide genetic stability. In this work, a reporter gene encoding a β-glucuronidase (GusA3) was integrated into four intergenic chromosomal locations. The integrants were tested for genetic stability and GusA3 activity. Two locations were selected for insertion downstream of constitutively highly expressed genes, one downstream of slpA (LBA0169), encoding a highly expressed surface-layer protein, and one downstream of phosphopyruvate hydratase (LBA0889), a highly expressed gene with homologs in other lactic acid bacteria. An inducible location was selected downstream of lacZ (LBA1462), encoding a β-galactosidase. A fourth location was selected in a low-expression region. The expression of gusA3 was evaluated from each location by measuring GusA3 activity on 4-methyl-umbelliferyl-β-d-glucuronide (MUG). GusA3 activity from both highly expressed loci was more than three logs higher than the gusA3-negative parent, L. acidophilus NCK1909. GusA3 activity from the lacZ locus was one log higher in cells grown in lactose than in glucose. The differences in expression levels between integration locations highlights the importance of rational targeting with gene cassettes intended for chromosomal expression. 相似文献