首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this immunohistochemical research was to reveal the distribution of a proline-rich peptide-1 (PRP-1) in various brain structures of intact and trauma-injured rats and to identify the mechanisms of promotion of neuronal recovery processes following PRP-1 treatment. PRP-1, produced by bovine hypothalamic magnocellular cells and consisting of 15 amino acid residues, is a fragment of neurophysin vasopressin associated glycoprotein isolated from bovine neurohypophysis neurosecretory granules. PRP-1-immunoreactivity (PRP-1-IR) was detected in the brain of intact rats in the neurons of paraventricular (PVN) and supraoptic (SON) nuclei in the hypothalamus, in almost all cell groups in the medulla oblongata, in Purkinje and some cerebellar nuclei cells, and in nerve fibers. At 3 weeks after hemisection of the spinal cord (SC) an asymmetry of PRP-1 localization in the PVN and SON was observed: no PRP-1-IR was exhibited at the affected sides of both nuclei. Daily intramuscular administration of PRP-1 for 3 weeks significantly increased the number of PRP-1-immunoreactive (PRP-1-Ir) varicose nerve fibers, and cells in PVN and SON and in cell groups of the limbic system and brain stem. Tanycytes in the median eminence and covering ependyma also demonstrated strong PRP-1-IR. PRP-1 treatment also activated neuropeptide Y-IR (NPY-IR) in nerve fibers and immunophilin fragment-IR (IphF-IR) in lymphocytes and nerve cells. A strong increase of PRP-1-IR was observed in the PVN and SON of SC-injured rats following the treatment with another PRP (PRP-3). Preliminary physiological data demonstrate that PRP-3 is more "aggressive" in the recovery processes than PRP-1. Based on the findings regarding PRP action on neurons survival, axons regeneration, and the number of IphF-Ir lymphocytes and NPY-Ir nerve fibers, PRP is suggested to act as a neuroprotector, functioning as a putative neurotransmitter and immunomodulator.  相似文献   

2.
Aluminium inhibits prenatal and postnatal brain development. However, aluminium incorporation into the brain of sucklings through maternal milk has not yet been well clarified because aluminium lacks a suitable isotope for radioactive tracer experiments. Using 26Al (26AlCl(3)) as a tracer, we measured 26Al incorporation into the brain of suckling rats by accelerator mass spectrometry. Lactating rats were subcutaneously injected with 26AlCl(3) from day 1 to day 20 postpartum. Suckling rats were weaned from day 21 postpartum. From day 5 to day 20 postpartum, the amounts of 26Al measured in the cerebrum, cerebellum, spinal cord, liver, and kidneys of suckling rats increased significantly. After weaning, the amounts of 26Al in the liver and kidneys decreased remarkably. Alternatively, in the cerebrum, cerebellum, and spinal cord, as much as 12 to 20% of the 26Al amounts present on day 20 postpartum remained in the tissues on day 730 postpartum. As the life span of rats is about 2 years, we conclude that considerable amounts of the 26Al taken up into the brain of suckling rats through maternal milk remained in their brain throughout their lifetime.  相似文献   

3.
为探讨八肽胆囊收缩素(CCk-8)和阿片肽相互作用的分子机理,利用抗体免疫沉淀技术研究了CCK-8与NDAP(k阿片受体激动剂)对大鼠脑(去皮层和小脑)和脊髓背柱组织Fos蛋白的影响。结果表明,0.1μmol/LCCK-8可显著刺激脑和脊髓组织中Fos蛋白增加(分别是对照组的3.8倍和3.6倍)。相同浓度的NDAP对Fos蛋白的生成亦有一定的诱导作用,分别是对照组的2.7倍和2.6倍。CCK-8和NDAP共同处理组织,Fos蛋白生成水平相似(脑)或高于(脊髓)CCK~-8单独诱导的水平。结果表明,CCK-8和NDAP均可直接诱导大鼠脑和脊髓组织c-fos的表达,它们对c-fos表达的相互作用在脑和脊髓中呈现不同的模式。  相似文献   

4.
Proline rich polypeptide (PRP-1) produced by neurosecretory cells of the hypothalamus is one of the fragments of neurophysin-vasopressin-associated glycoprotein. The primary structure of the neuropeptide PRP-1 isolated from neurosecretory granules of bovine neurohypophysis. We investigated PRP-1 action on chondrosarcoma, the second most common malignancy in bone, which primarily affects the cartilage cells. This deadly disease does not have any effective treatment. Earlier we demonstrated MYC oncogene inactivating effect by 1 μg/ml concentration brain PRP-1 In the present study we observed reduced viable sarcoma JJ012 cell numbers in comparison with control (89% growth inhibition) when treated with low concentrations of PRP-1 (0.5–1 μg/ml). Higher concentrations did not exhibit inhibitory effect. We assume that PRP-1 in low concentration impedes cell cycle progression. The fact that low concentrations of PRP-1 abolished Myc activity prompts to think that the antitumorigenic effect of PRP-1 in low concentrations is mediated through oncogene inactivation.  相似文献   

5.
6.
Long time ago aluminum (Al) was considered as a non-toxic element and its use had no restrictions. However, over the last two decades, scientific publications have indicated that Al is a toxic element. In line with this, aluminum accumulation in the organism is associated with a variety of human pathologies. Efficient therapeutics approach to treat Al intoxication are still not available, but there is a consensus that chelation therapy is the procedure to be used. However, the development of new chelating agents are highly desirable to improve the efficacy of the treatment of Al intoxication. The present study evaluates the chelating effect of two novel pyrimidines: 4-tricloromethyl-1-H-pyrimidin-2-one (THP) and (4-methyl-6-trifluoromethyl-6-pyrimidin-2-il)-hydrazine (MTPH) in a mice model of aluminum intoxication and compares their efficacy with those of desferrioxamine (DFO), a classical agent used for treat Al accumulation. The animals were exposed to aluminum by gavage (0.1 mmol aluminum/kg/day) 5 days/week for 4 weeks. At the end of this period, DFO was injected i.p. and the novel pyrimidines were given by gavage at 0.2 mmol/kg/day for five consecutive days. Aluminum concentration in tissues (brain, liver, kidney and blood) was determined by graphite furnace atomic absorption spectroscopy (GFAAS). The results showed that when administered by gavage, aluminum accumulated in the brain, kidney and liver of mice. MTPH was able to decrease aluminum levels in aluminum plus citrate animal groups, whereas THP was inefficient for this purpose. However, the novel pyrimidines used in this study were unable to surpass the aluminum chelating property of DFO. Thus, new studies must be performed utilizing other chelating agents which can decrease aluminum toxicity.  相似文献   

7.
Expression of mRNA for the ghrelin receptor, GHS-R1a, was detected in various peripheral and central tissues of fetal rats, including skin, bone, heart, liver, gut, brain and spinal cord, on embryonic day (ED)15 and ED17. However, its expression in skin, bone, heart and liver, but not in gut, brain and spinal cord, became relatively weak on ED19 and disappeared after birth (ND2). Ghrelin and des-acyl ghrelin facilitated the proliferation of cultured fetal (ED17, 19), but not neonatal (ND2), skin cells. On the other hand, with regard to cells from the spinal cord and hypothalamus, the proliferative effect of ghrelin continued after birth, whereas the effect of des-acyl ghrelin on neurogenesis in these tissues was lost at the ED19 fetal and ND2 neonatal stages. Immunohistochemistry revealed that the cells in the hypothalamus induced to proliferate by ghrelin at the ND2 stage were positive for nestin and glial fibrillary acidic protein. These results suggest that in the period immediately prior to, and after birth, rat fetal cells showing proliferation in response to ghrelin and des-acyl ghrelin are at a transitional stage characterized by alteration of the expression of GHS-R1a and an undefined des-acyl ghrelin receptor, their responsiveness varying among different tissues.  相似文献   

8.
Al is found in the developing conceptus, but little information is available concerning its tissue distribution and its changes in concentration with age. Because Al has affinity for many of the same biological ligands as the essential mineral cations Ca, Mg, Zn, Fe, and Mn, we hypothesized that Al might show a pattern of developmental concentrations that was similar to one or more of these elements in the brain, a major target of Al toxicity. Concentrations of Al, Ca, Mg, Zn, Fe, and Mn were measured in spinal cord, brainstem, cerebellum, and forebrain of guinea pig fetuses on gestation day (GD) 30 and 45, at birth, and on postnatal day (PND) 3, 6, and 12. Dams were fed commercial guinea pig chow, which contained 47 μg Al/g. Tissue Al and Mn were measured with electrothermal atomic absorption spectrophotometry (ETAAS), and the other elements with inductively coupled axial plasma spectroscopy (ICAP-AES). Al concentrations in the brain regions were highest in spinal cord, brainstem, and cerebellum, and decreased during late gestation and lactation. Al did not show marked increases in regional brain concentrations during the final third of gestation as did Fe, Mg, and Zn. In contrast to Fe and Ca, Al did not accumulate in placenta. Al was the only element to show higher concentrations in spinal cord than in any other tissue at birth. In summary, the tissue distribution of Al did not follow that of essential cations as examined in this study.  相似文献   

9.
中枢神经蛋白质组分析中双向电泳技术的建立   总被引:16,自引:0,他引:16  
建立和优化了中枢神经组织蛋白质组分析所需的双向电泳及相关技术.由于中枢神经组织结构的特殊性,样品处理非常困难.对样品液组成、样品处理、上样方式、上样量、IPG胶条和SDS-聚丙烯酰胺凝胶电泳染色方法和保存等相关技术进行了比较研究和条件优化后,以固相pH梯度等电聚焦为第一向和SDS均一胶(T=12.5%)的水平电泳为第二向,成功地得到了神经组织双向电泳图谱.  相似文献   

10.
It is well known that oxidative stress damages bimolecules such as DNA and lipids. No study is available on the morphine-induced oxidative damage and fatty acids changes in brain and spinal tissues. The aim of this work was to determine the effects of morphine on the concentrations and compositions of fatty acid in spinal cord segments and brain tissues in rabbits as well as lipid peroxidation (LP) and glutathione (GSH) levels in cortex brain. Twelve New Zealand albino rabbits were used and they were randomly assigned to two groups of 6 rabbits each. First group used as control although morphine administrated to rats in second group. Cortex brain and (cervical, thoracic, lumbar) samples were taken. The fatty acids between n:18.0 and 21.0 were present in spinal cord sections and n:10 fatty acids in control animals were present in the brain tissues. Compared to n:20.0–24.0 fatty acids in spinal cord sections and 8.0 fatty acids in the brain tissues of drug administered animals. The concentration and composition of the fatty acid methyl esters in spinal cord and brain tissues was decreased by morphine treatments. LP levels in the cortex brain were increased although GSH levels were decreased by the morphine administration. In conclusion, unsaturated fatty acids contents in brain and spinal cord sections and GSH were reduced by administrating spinal morphine although oxidative stress as LP increased. The inhibition oxidative damage may be a useful strategy for the development of a new protection for morphine administration as well as opiate abuse.  相似文献   

11.
Abstract: Binding of 1-[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to mouse brain and spinal cord membranes was studied using compounds selective for the NMDA-coupled 1-(1-phenylcyclohexyl)piperidine (PCP) and/or σ recognition sites. In both tissues, [3H]TCP labeled two populations of binding sites. Density of the low-affinity sites was approximately the same in both tissues, but the population of the high-affinity [3H]TCP sites was three times bigger in the brain than in the spinal cord. Self- and cross-displacement studies showed that the high-affinity [3H]TCP binding sites could be identical with NMDA receptor-coupled PCP sites, whereas the low-affinity [3H]TCP sites may be associated with σ binding sites in both tissues. The NMDA-coupled PCP sites labeled in the presence of 6.25 n M [3H]TCP constituted a much higher percentage of the total binding in the brain (75%) than in the spinal cord (44%). Consistent with this, reintroduction of glycine and glutamate significantly increased, but DA antagonists significantly inhibited [3H]TCP binding in the brain but not in the spinal cord. Together, these data suggest that a large component of [3H]TCP-labeled binding sites in the spinal cord may be associated with σ but not the NMDA receptor-coupled PCP sites.  相似文献   

12.
The purpose of the present study was to evaluate the neuroprotective action of proline-rich peptide-1 (PRP-1) produced by hypothalamic nuclei cells (nuclei paraventricularis and supraopticus) following lateral hemisection of spinal cord (SC). The dynamics of rehabilitative shifts were investigated at various periods of postoperative survival (1–2, 3, and 4 weeks), both with administration of PRP-1 and without it (control). We registered evoked spike flow activity in both interneurons and motoneurons of the same segment of transected and symmetric intact sides of SC and below it on the stimulation of mixed (n. ischiadicus), flexor (n. gastrocnemius) and extensor (n. peroneus communis) nerves. In the control group (administration of 0.9% saline as placebo), no significant decrease of post-stimulus activity of neurons was observed on the transected side by the 2nd week. This activity strongly decreased by week 3 postaxotomy, with some increase on the intact side, possibly of compensatory origin. No shifts occurred by the 4th week. Regardless of the period of administration, PRP-1 increased neuronal activity on the transected side, with the same activation levels on both SC sides. These data were confirmed by histochemical investigation. PRP-1 administration, both daily and every other day, for a period of 2–3 weeks led to prevention of scar formation and promotion of the re-growth of white matter nerve fibers in the damaged area. It also resulted in prevention of neuroglial elements degeneration and reduction in gliosis expression in the lesion supporting neuronal survival. Thus, PRP-1 achieved protection against “tissue stress”, which was also confirmed by the registration of activity on the level of transection and restoration of the motor activity on the injured side. The obtained data propose the possibility of PRP-1 application in clinical practice for prevention of neurodegeneration of traumatic origin.  相似文献   

13.
The thyroid gland synthesizes thyroxine (T4), which passes through the larval tadpole's circulatory system. The enzyme type II iodothyronine deiodinase (D2) converts thyroxine (T4) to the active hormone 3,5,3'-triiodothyronine (T3) in peripheral tissues. An early response to thyroid hormone (TH) in the Xenopus laevis tadpole is the stimulation of cell division in cells that line the brain ventricles, the lumen of the spinal cord, and the limb buds. These cells express constitutively high levels of D2 mRNA. Exogenous T4 induces early DNA synthesis in brain, spinal cord, and limb buds as efficiently as T3. The deiodinase inhibitor iopanoic acid blocks T4- but not T3-induced cell division. At metamorphic climax, both TH-induced cell division and D2 expression decrease in the brain. Then D2 expression appears in late-responding tissues including the anterior pituitary, the intestine, and the tail where cell division is reduced or absent. Therefore, constitutive expression of D2 occurs in the earliest target tissues of TH that will grow and differentiate, while TH-induced expression of D2 takes place in late-responding tissues that will remodel or die. This pattern of constitutive and induced D2 expression contributes to the timing of metamorphic changes in these tissues.  相似文献   

14.
The intermediate filament protein composition in glial cells of goldfish optic nerve differs from that found in glial cells of the goldfish spinal cord and brain. Brain and spinal cord glial cells contain glial fibrillary acidic protein (GFAP), whereas glial cells in the optic nerve contain ON3. The ON3 protein of the goldfish optic nerve was recently identified as the goldfish equivalent to the mammalian type II keratin 8 protein. In addition to the ON3 protein, the goldfish optic nerve also contains a 48-kDa protein. Immunoblotting experiments suggest that this protein is equivalent to the mammalian type I keratin 18 protein, which typically pairs with keratin 8 to form filaments. We show that these proteins are not specific to the optic nerve. The ON3 and 48-kDa proteins of the goldfish optic nerve share common antigenic properties with the predominant keratin pair expressed in the goldfish liver. These proteins are also expressed at low levels in the goldfish brain and spinal cord. In addition RNase protection assays and Northern blots indicate that the mRNA for the ON3 protein in optic nerve is identical to the message found in other goldfish tissues. The expression of ON3 was also examined in cultured glial cells from goldfish spinal cord and optic nerve and cultured fibroblast cells. Analysis of intermediate filament protein expression in cultured glial cells taken from goldfish spinal cord demonstrated the absence of GFAP in these cells and the expression of ON3. This protein was also the predominant intermediate filament protein of cultured optic nerve glial cells and fibroblasts. The differences in the expression of intermediate filament proteins in mammals and lower vertebrates are discussed. In addition, we discuss how the expression of a simple epithelial keratin pair in glial cells of the goldfish optic nerve may be associated with this system's capacity for continuous growth and regeneration.  相似文献   

15.
Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomenon on a molecular level. Both the mature and regenerating axolotl spinal cord express molecular markers of DV progenitor cell domains found during embryonic neural tube development, including Pax6, Pax7 and Msx1. Furthermore, the expression of Sonic hedgehog (Shh) is localized to the ventral floor plate domain in both mature and regenerating spinal cord. Patched1 receptor expression indicated that hedgehog signaling occurs not only within the spinal cord but is also transmitted to the surrounding blastema. Cyclopamine treatment revealed that hedgehog signaling is not only required for DV patterning of the regenerating spinal cord but also had profound effects on the regeneration of surrounding, mesodermal tissues. Proliferation of tail blastema cells was severely impaired, resulting in an overall cessation of tail regeneration, and blastema cells no longer expressed the early cartilage marker Sox9. Spinal cord removal experiments revealed that hedgehog signaling, while required for blastema growth is not sufficient for tail regeneration in the absence of the spinal cord. By contrast to the cyclopamine effect on tail regeneration, cyclopamine-treated regenerating limbs achieve a normal length and contain cartilage. This study represents the first molecular localization of DV patterning information in mature tissue that controls regeneration. Interestingly, although tail regeneration does not occur through the formation of somites, the Shh-dependent pathways that control embryonic somite patterning and proliferation may be utilized within the blastema, albeit with a different topography to mediate growth and patterning of tail tissues during regeneration.  相似文献   

16.
The o-phthaldialdehyde precolumn derivatives of psychosine, sphinganine and sphingosine extracted from brain and spinal cord tissues were determined by high-performance liquid chromatography–fluorescence detection. This method was developed with the purpose of detecting an endogenous amount of psychosine, sphingosine and sphinganine using small aliquots of brain tissues and spinal cord in rats. These sphingolipid bases were extracted in various ratios of chloroform–methanol and several pH values. Recovery of the method is about 81% in 12 ng/tube (final volume, 320 μl), 90–95% in 45 ng/tube of sphingosine and sphinganine within 2–12% relative standard deviation. Detection limits of these sphingoid bases were about 0.05 pmol/mg brain tissue. In the forebrain, brainstem and spinal cord of rats at three different ages of postnatal days (PND) 1, PND 13 and 6 months old, the endogenous concentrations of psychosine, sphingosine and sphinganine were determined. From these results, this method is suitable for the determination of sphingoid bases in small aliquot of brain and spinal cord tissues.  相似文献   

17.
Lipid synthesis from acetoacetate and 3-hydroxybutyrate was studied in chick embryo from 15 to 21 days and in chick neonate from 1 to 21 days. Embryonic spinal cord showed higher ability than brain to incorporate acetoacetate into total lipids, although a sharp decrease was found at hatching. 3-Hydroxybutyrate incorporation into total lipids was also higher in spinal cord than in brain, especially during the embryonic period. Phospholipids were the main lipids formed in both tissues from both precursors. An appreciable percentage of radioactivity was also recovered as free cholesterol, especially during the embryonic phase. The developmental patterns of amino acid synthesis from acetoacetate and 3-hydroxybutyrate were similar in both tissues: a clear increase after hatching was followed by a decrease at day 4 of neonatal life. Acetoacetate was a better substrate for amino acid synthesis than 3-hydroxybutyrate during the embryonic development in both tissues. Oxidation of both precursors to CO2 strongly decreased between 15 and 21 days of embryonic development both in brain and spinal cord.  相似文献   

18.
Proline rich polypeptide (PRP-1) produced by NPV and NSO cells is released into the general circulation and exerts its effect on the activity of immunocompetent and neuronal cells. PRP-1 is a unique regulator of hematopoiesis, stimulator of bone-marrow hematogenesis. Taking into consideration our preliminary data on antitumor and unique diverse biological properties of PRP-1 previously described by Galoyan et al., we proceeded with investigation of the PRP-1 effect on chondrosarcoma, the second most common malignancy in bone, which tends to be locally invasive and then metastatic. Currently it does not have any effective treatment and does not respond either to radiation or chemotherapy, leaving surgical resection as the only option. Our experimental results of PRP-1 action on human chondrosarcoma JJ012 cells demonstrated inactivation, abolishment of Myc oncogene activity usually upregulated in chondrosarcoma cells and other malignancies. The fact that addition of PRP-1 caused drastic inactivation of Myc–luc response element to the control level in human chondrosarcoma JJ012 cell line prompts to investigate further this neuropeptides powerful antioncogenic potential, opening up possibilities to consider PRP-1 as a potential therapeutic tool for chondrosarcoma treatment.  相似文献   

19.
We investigated the action of the new hypothalamic proline-rich peptide (PRP-1), normally produced by neurosecretory cells of hypothalamic nuclei (NPV and NSO), 3 and 4 weeks following rat sciatic nerve transection. The impulse activity flow of interneurons (IN) and motoneurons (MN) on stimulation of mixed (n. ischiadicus), flexor (n. gastrocnemius – G) and extensor (n. peroneus communis – P) nerves of both injured and symmetric intact sides of spinal cord (SC) was recorded in rats with daily administration of PRP-1 (for a period of 3 weeks) and without it (control). On the injured side of SC in control, there were no responses of IN and MN on ipsilateral G and P stimulation, while responses were elicited on contralateral nerve stimulation. The neuron responses on the intact side of SC were revealed in a reverse ratio. Thus, there were no effects upon stimulation of the injured nerve distal stump in the control because of the absence of fusion between transected nerve stumps. This was also testified by the atrophy of the distal stump and the absence of motor activity of the affected limb. In PRP-1-treated animals, the responses of SC IN and MN in postaxotomy 3 weeks on the injured side of SC at ipsilateral nerve stimulation and on the intact side at contralateral nerve stimulation were recorded because of the obvious fusion of the severed nerve stumps. The histochemical data confirmed the electrophysiological findings. Complete coalescence of transected fibers together with restoration of the motor activity of the affected limb provided evidence for reinnervation on the injured side. Thus, it may be concluded that PRP-1 promotes nerve regeneration and may be used clinically to improve the outcome of peripheral nerve primary repair.  相似文献   

20.
This work studies the phospholipid and fatty acid composition in hake brain and spinal cord and in sea bass brain. Fluorescence anisotropy of phospholipid vesicles labeled with 1,6-diphenyl hexatriene was measured to investigate the associated dynamic properties. In all tissues studied, phosphatidylcholine and phosphatidylethanolamine were the major constituents with minor contributions of phosphatidylserine, phosphatidylinositol and sphingomyelin. Fatty acids belong to the n-9 and n-3 series exclusively. Phosphatidylinositol from hake spinal cord and phosphatidylethanolamine and phosphatidylserine from hake brain contain the greatest percentages of eicosa-5,8,11,14,17-pentaenoic (20:5) and docosa-4,7,10,13,16,19-hexaenoic (22:6), respectively. For all fractions studied the total content of saturated fatty acids increases in the order of hake spinal cord, hake brain, sea bass brain together with a decrease in the sum of monounsaturated fatty acids. The comparison between fluorescence anisotropy values and fatty acid composition clearly demonstrates that saturated acids and 20:5 and 22:6 exert a rigidizing effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号