首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
High levels of the pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), are present in the gut mucosa of patients suffering form various diseases, most notably inflammatory bowel diseases (IBD). Since the inflammatory milieu can cause important alterations in epithelial cell function, we examined the cytokine effects on the expression of the enterocyte differentiation marker, intestinal alkaline phosphatase (IAP), a protein that detoxifies bacterial lipopolysaccharides (LPS) and limits fat absorption. Sodium butyrate (NaBu), a short-chain fatty acid and histone deacetylase (HDAC) inhibitor, was used to induce IAP expression in HT-29 cells and the cells were also treated +/- the cytokines. Northern blots confirmed IAP induction by NaBu, however, pretreatment (6 h) with either cytokine showed a dose-dependent inhibition of IAP expression. IAP Western analyses and alkaline phosphatase enzyme assays corroborated the Northern data and confirmed that the cytokines inhibit IAP induction. Transient transfections with a reporter plasmid carrying the human IAP promoter showed significant inhibition of NaBu-induced IAP gene activation by the cytokines (100 and 60% inhibition with IL-1beta and TNF-alpha, respectively). Western analyses showed that NaBu induced H4 and H3 histone acetylation, and pretreatment with IL-1beta or TNF-alpha did not change this global acetylation pattern. In contrast, chromatin immunoprecipitation showed that local histone acetylation of the IAP promoter region was specifically inhibited by either cytokine. We conclude that IL-1beta and TNF-alpha inhibit NaBu-induced IAP gene expression, likely by blocking the histone acetylation within its promoter. Cytokine-mediated IAP gene silencing may have important implications for gut epithelial function in the setting of intestinal inflammatory conditions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Histone acetylation has been shown to affect chromatin structure and gene expression. The mitogen-activated protein (MAP) kinase pathway is activated by a number of cytokines and plays critical roles in hematopoietic cell survival, proliferation, and differentiation. We focused on the part of the MAP kinase cascade and granulocyte colony-stimulating factor (G-CSF)in histone acetylation at one of the critical myeloid differentiation-associated genes, myeloperoxidase (MPO). G-CSF caused rapid acetylation of histone H3 and H4 at the promoter of MPO as revealed by chromatin immunoprecipitation. In addition, CBP and p300 were recruited to the promoter in response to G-CSF. Furthermore, we showed that rapid histone acetylation induced by G-CSF is MAP kinase-dependent. These results illustrate how myeloid-differentiating signals via G-CSF may be coupled with histone acetylation during the process of gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号