首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sha R  Liu F  Seeman NC 《Biochemistry》2000,39(37):11514-11522
The Holliday junction is a central intermediate in genetic recombination. It contains four strands of DNA that are paired into four double helical arms flanking a branch point. In naturally occurring Holliday junctions, the sequence flanking the branch point contains 2-fold (homologous) symmetry. As a consequence of this symmetry, the junction can undergo a conformational isomerization known as branch migration, which relocates the site of branching. In the absence of proteins and in the presence of Mg(2+), the four arms are known to stack in pairs, forming two helical domains whose orientations are antiparallel. Nevertheless, the mechanistic models proposed for branch migration are all predicated on a parallel alignment of helical domains. Here, we have used antiparallel DNA double crossover molecules to demonstrate that branch migration can occur in antiparallel Holliday junctions. We have constructed a DNA double crossover molecule with three crossover points. Two adjacent branch points in this molecule are flanked by symmetric sequences. The symmetric crossover points are held immobile by the third crossover point, which is flanked by asymmetric sequences. Restriction of the helices that connect the immobile junction to the symmetric junctions releases this constraint. The restricted molecule undergoes branch migration, even though it is constrained to an antiparallel conformation.  相似文献   

2.
Liao S  Mao C  Birktoft JJ  Shuman S  Seeman NC 《Biochemistry》2004,43(6):1520-1531
Holliday junctions are intermediates in genetic recombination. They consist of four strands of DNA that flank a branch point. In natural systems, their sequences have 2-fold (homologous) sequence symmetry. This symmetry enables the molecules to undergo an isomerization, known as branch migration, that relocates the site of the branch point. Branch migration leads to polydispersity, which makes it difficult to characterize the physical properties of the junction and the effects of the sequence context flanking the branch point. Previous studies have reported two symmetric junctions that do not branch migrate: one that is immobilized by coupling to an asymmetric junction in a double crossover context, and a second that is based on molecules containing 5',5' and 3',3' linkages. Both are flawed by distorting the structure of the symmetric junction from its natural conformation. Here, we report an undistorted symmetric immobile junction based on the use of DNA parallelogram structures. We have used a series of these junctions to characterize the junction resolution reaction catalyzed by vaccinia virus DNA topoisomerase. The resolution reaction entails cleavage and rejoining at CCCTT/N recognition sites arrayed on opposing sides of the four-arm junction. We find that resolution is optimal when the scissile phosphodiester (Tp/N) is located two nucleotides 5' to the branch point on the helical strand. Covalent topoisomerase-DNA adducts are precursors to recombinant strands in all reactions, as expected. Kinetic analysis suggests a rate limiting step after the first-strand cleavage.  相似文献   

3.
Three-way DNA junctions can adopt several different conformers, which differ in the coaxial stacking of the arms. These structural variants are often dominated by one conformer, which is determined by the DNA sequence. In this study we have compared several three-way DNA junctions in order to assess how the arrangement of bases around the branch point affects the conformer distribution. The results show that rearranging the different arms, while retaining their base sequences, can affect the conformer distribution. In some instances this generates a structure that appears to contain parallel coaxially stacked helices rather than the usual anti-parallel arrangement. Although the conformer equilibrium can be affected by the order of purines and pyrimidines around the branch point, this is not sufficient to predict the conformer distribution. We find that the folding of three-way junctions can be separated into two groups of dinucleotide steps. These two groups show distinctive stacking properties in B-DNA, suggesting there is a correlation between B-DNA stacking and coaxial stacking in DNA junctions.  相似文献   

4.
Sha R  Iwasaki H  Liu F  Shinagawa H  Seeman NC 《Biochemistry》2000,39(39):11982-11988
The Holliday junction is a key DNA intermediate in the process of genetic recombination. It consists of two double-helical domains composed of homologous strands that flank a branch point; two of the strands are roughly helical, and two form the crossover between the helices. RuvC is a Holliday junction resolvase that cleaves the helical strands at a symmetric sequence, leading to the production of two recombinant molecules. We have determined the position of the cleavage site relative to the crossover point by the use of symmetric immobile junctions; these are DNA molecules containing two crossover points, one held immobile by sequence asymmetry and the second a symmetric sequence, but held immobile by torsional coupling to the first junction. We have built five symmetric immobile junctions, in which the tetranucleotide recognition site is moved stepwise relative to the branch point. We have used kinetic analysis of catalysis, gel retardation, and hydroxyl radical hypersensitivity to analyze this system. We conclude that the internucleotide linkage one position 3' to the crossover point is the favored site of cleavage.  相似文献   

5.
The Holliday junction, the key intermediate of recombination, is generated by strand exchange resulting in a covalent connection between two recombining DNA molecules. Translocation of a Holliday junction along DNA, or branch migration, progressively exchanges one DNA strand for another and determines the amount of information that is transferred between two recombining partners. In Escherichia coli, the RuvAB protein complex promotes rapid and unidirectional branch migration of Holliday junctions. We have studied translocation of Holliday junctions using a quantitative biochemical system together with a 'single-molecule' branch migration assay. We demonstrate that RuvAB translocates the junctions through identical DNA sequences in a processive manner with a broad distribution of individual branch migration rates. However, when the complex encounters short heterologous sequences, translocation of the Holliday junctions is impeded. We conclude that translocation of the junctions through a sequence heterology occurs with a probability of bypass being determined both by the length of the heterologous region and the lifetime of the stalled RuvAB complex.  相似文献   

6.
Interaction of linear homologous DNA duplexes by formation of Holliday junctions was revealed by electrophoresis and confirmed by electron microscopy. The phenomenon was demonstrated using a model of five purified PCR products of different size and sequence. The double-stranded structure of interacting DNA fragments was confirmed using several consecutive purifications, S1-nuclease analysis, and electron microscopy. Formation of Holliday junctions depends on DNA concentration. A thermodynamic equilibrium between duplexes and Holliday junctions was shown. We propose that homologous duplex interaction is initiated by nucleation of several dissociated terminal base pairs of two fragments. This process is followed by branch migration creating a population of Holliday junctions with the branch point at different sites. Finally, Holliday junctions are resolved via branch migration to new or previously existing duplexes. The phenomenon is a new property of DNA. This type of DNA-DNA interaction may contribute to the process of Holliday junction formation in vivo controlled by DNA conformation and DNA-protein interactions. It is of practical significance for optimization of different PCR-based methods of gene analysis, especially those involving heteroduplex formation.  相似文献   

7.
Competition binding and UV melting studies of a DNA model system consisting of three, four or five mutually complementary oligonucleotides demonstrate that unpaired bases at the branch point stabilize three- and five-way junction loops but destabilize four-way junctions. The inclusion of unpaired nucleotides permits the assembly of five-way DNA junction complexes (5WJ) having as few as seven basepairs per arm from five mutually complementary oligonucleotides. Previous work showed that 5WJ, having eight basepairs per arm but lacking unpaired bases, could not be assembled [Wang, Y.L., Mueller, J.E., Kemper, B. and Seeman, N.C. (1991) Biochemistry, 30, 5667-5674]. Competition binding experiments demonstrate that four-way junctions (4WJ) are more stable than three-way junctions (3WJ), when no unpaired bases are included at the branch point, but less stable when unpaired bases are present at the junction. 5WJ complexes are in all cases less stable than 4WJ or 3WJ complexes. UV melting curves confirm the relative stabilities of these junctions. These results provide qualitative guidelines for improving the way in which multi-helix junction loops are handled in secondary structure prediction programs, especially for single-stranded nucleic acids having primary sequences that can form alternative structures comprising different types of junctions.  相似文献   

8.
M C Whitby  S D Vincent    R G Lloyd 《The EMBO journal》1994,13(21):5220-5228
The product of the recG gene of Escherichia coli is needed for normal recombination and DNA repair in E. coli and has been shown to help process Holliday junction intermediates to mature products by catalysing branch migration. The 76 kDa RecG protein contains sequence motifs conserved in the DExH family of helicases, suggesting that it promotes branch migration by unwinding DNA. We show that RecG does not unwind blunt ended duplex DNA or forked duplexes with short unpaired single-strand ends. It also fails to unwind a partial duplex (52 bp) classical helicase substrate containing a short oligonucleotide annealed to circular single-stranded DNA. However, unwinding activity is detected when the duplex region is reduced to 26 bp or less, although this requires high levels of protein. The unwinding proceeds with a clear 3' to 5' polarity with respect to the single strand bound by RecG. Substantially higher levels of unwinding are observed with substrates containing a three-way duplex branch. This is attributed to RecG's particular affinity for junction DNA which we demonstrate would be heightened by single-stranded DNA binding protein in vivo. Reaction requirements for unwinding are the same as for branch migration of Holliday junctions, with a strict dependence on hydrolysis of ATP. These results define RecG as a new class of helicase that has evolved to catalyse the branch migration of Holliday junctions.  相似文献   

9.
DNA self-fitting is revealed by the study of intermolecular contacts found in the crystal packing of a dodecamer where the helices are locked together by a reciprocal groove-backbone interaction and form a crossed structure. It is proposed that it could be a model for DNA-DNA interaction in several biological processes such as the node of supercoiled DNA and synapsis in recombination. The main topological and symmetrical features of this crossed structure are described and the symmetry-homology relationships are analyzed in the more general case of B-DNA interacting helices. Model-building of Holliday junctions with minimal change from the starting crystal coordinates of the crossed structure leads to at least three different solutions. These various models are compared from the point of view of their symmetry and topology, in the light of their branch migration and resolution properties. In addition, a model for a self-favored reciprocal unwinding mechanism based on the experimentally observed structural alterations, such as the packing-induced opening of G.C base-pairs is proposed. In this model, the phosphate groups of the invading backbone trigger the opening of the base-pairs of the other helix, by pulling cytosine or adenine bases out of the major groove after binding to their amino group.  相似文献   

10.
M A Azaro  A Landy 《The EMBO journal》1997,16(12):3744-3755
Lambda site-specific recombination proceeds by a pair of sequential strand exchanges that first generate and then resolve a Holliday junction intermediate. A family of synthetic Holliday junctions with the branch point constrained to the center of the 7 bp overlap region was used to show that resolution of the top strands and resolution of the bottom strands are symmetrical but stereochemically distinct processes. Lambda integrase is sensitive to isomeric structure, preferentially resolving the pair of strands that are crossed in the protein-free Holliday junction. At the branch point of stacked immobile Holliday junctions, the number of purines is preferentially maximized in the crossed (versus continuous) strands if there is an inequality of purines between strands of opposite polarity. This stacking preference was used to anticipate the resolution bias of freely mobile junctions and thereby to reinforce the conclusions with monomobile junctions. The results provide a strong indication that in the complete recombination reaction a restacking of helices occurs between the top and bottom strand exchanges.  相似文献   

11.
The heterodimeric HU protein, highly conserved in bacteria and involved in transposition, recombination, DNA repair, etc., shares similarity with histones and HMGs. HU, which binds DNA with low affinity and without sequence specificity, binds strongly and specifically to DNA junctions and DNA containing single-strand breaks. The fine structure of these specific complexes was studied by footprinting and HU chemically converted into nucleases. The positioning of HUalphabeta on nicked DNA is asymmetrical and specifically oriented: the beta-arm binds the area surrounding the break whereas the alpha-arm lies on the 3' DNA branch. This positioning necessitates a pronounced bend in the DNA at the discontinuous point, which was estimated by circular permutation assay to be 65 degrees. At junctions, HU is similarly asymmetrically positioned in an identical orientation: the junction point plays the role of the discontinuous point in the nicked DNA. The HU binding motif present in both structures is a pair of inclined DNA helices.  相似文献   

12.
Various branched DNA structures were created from synthetic, partly complementary oligonucleotides combined under annealing conditions. Appropriate mixtures of oligonucleotides generated three specific branched duplex DNA molecules: (i) a Holliday junction analog having a fixed (immobile) crossover bounded by four duplex DNA branches, (ii) a similar Holliday junction analog which is capable of limited branch migration and, (iii) a Y-junction, with three duplex branches and fixed branch point. Each of these novel structures was specifically cleaved by bacteriophage T7 gene 3 product, endonuclease I. The cleavage reaction "resolved" the two Holliday structure analogs into pairs of duplex DNA products half the size of the original molecules. The point of cleavage in the fixed-junction molecules was predominantly one nucleotide removed to the 5' side of the expected crossover position. Multiple cleavage positions were mapped on the Holliday junction with the mobile, or variable, branch point, to sites consistent with the unrestricted movement of the phosphodiester crossover within the region of limited dyad symmetry which characterizes this molecule. Based on the cleavage pattern observed with this latter substrate, the enzyme displayed a modest degree of sequence specificity, preferring a pyrimidine on the 3' side of the cleavage site. Branched molecules that were partial duplexes (lower order complexes which possessed single-stranded as well as duplex DNA branches) were also substrates for the enzyme. In these molecules, the cleaved phosphodiester bonds were in duplex regions only and predominantly one nucleotide to the 5' side of the branch point. The phosphodiester positions 5' of the branch point in single-stranded arms were not cleaved. Under identical reaction conditions, individually treated oligonucleotides were completely refractory. Thus, cleavage by T7 endonuclease I displays great structural specificity with an efficiency that can vary slightly according to the DNA sequence.  相似文献   

13.
The RuvAB proteins catalyze branch migration of Holliday junctions during DNA recombination in Escherichia coli. RuvA binds tightly to the Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with its cellular partner RuvB. The replication fork helicase DnaB catalyzes branch migration like RuvB but, unlike RuvB, is not dependent on RuvA for activity. In this study, we specifically analyze the function of RuvA by studying RuvA in conjunction with DnaB, a DNA pump that does not work with RuvA in the cell. Thus, we use DnaB as a tool to dissect RuvA function from RuvB. We find that RuvA does not inhibit DnaB-catalyzed branch migration of a homologous junction, even at high concentrations of RuvA. Hence, specific protein-protein interaction is not required for RuvA mobilization during branch migration, in contrast to previous proposals. However, low concentrations of RuvA block DnaB unwinding at a Holliday junction. RuvA even blocks DnaB-catalyzed unwinding when two DnaB rings are acting in concert on opposite sides of the junction. These findings indicate that RuvA is intrinsically mobile at a Holliday junction when the DNA is undergoing branch migration, but RuvA is immobile at the same junction during DNA unwinding. We present evidence that suggests that RuvA can slide along a Holliday junction structure during DnaB-catalyzed branch migration, but not during unwinding. Thus, RuvA may act as a sliding collar at Holliday junctions, promoting DNA branch migration activity while blocking other DNA remodeling activities. Finally, we show that RuvA is less mobile at a heterologous junction compared to a homologous junction, as two opposing DnaB pumps are required to mobilize RuvA over heterologous DNA.  相似文献   

14.
Holliday junctions are critical intermediates for homologous, site-specific recombination, DNA repair, and replication. A wealth of structural information is available for immobile four-way junctions, but the controversy on the mechanism of branch migration of Holliday junctions remains unsolved. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal (Sigal, N., and Alberts, B. (1972) J. Mol. Biol. 71, 789-793 and Meselson, M. (1972) J. Mol. Biol. 71, 795-798), exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration (Panyutin, I. G., and Hsieh, P. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 2021-2025) suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration and time-lapse atomic force microscopy, an imaging technique capable of imaging DNA dynamics. The single molecule atomic force microscopy experiments performed in the presence and in the absence of divalent cations show that mobile Holliday junctions adopt an unfolded conformation during branch migration that is retained despite a broad range of motion in the arms of the junction. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction.  相似文献   

15.
The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday) junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements.  相似文献   

16.
The Holliday junction is a key intermediate in genetic recombination. Here, we examine the effect of a nucleosome core on movement of the Holliday junction in vitro by spontaneous branch migration. Histone octamers consisting of H2A, H2B, H3, and H4 are reconstituted onto DNA duplexes containing an artificial nucleosome-positioning sequence consisting of a tandem array of an alternating AT-GC sequence motif. Characterization of the reconstituted branch migration substrates by micrococcal nuclease mapping and exonuclease III and hydroxyl radical footprinting reveal that 70% of the reconstituted octamers are positioned near the center of the substrate and the remaining 30% are located at the distal end, although in both cases some translational degeneracy is observed. Branch migration assays with the octamer-containing substrates reveal that the Holliday junction cannot migrate spontaneously through DNA organized into a nucleosomal core unless DNA-histone interactions are completely disrupted. Similar results are obtained with branch migration substrates containing an octamer positioned on a naturally occurring sequence derived from the yeast GLN3 locus. Digestion of Holliday junctions with T7 endonuclease I establishes that the junction is not trapped by the octamer but can branch migrate in regions free of histone octamers. Our findings suggest that migration of Holliday junctions during recombination and the recombinational repair of DNA damage requires proteins not only to accelerate the intrinsic rate of branch migration but also to facilitate the passage of the Holliday junction through a nucleosome.  相似文献   

17.
The Holliday junction is a central intermediate in genetic recombination. This four-stranded DNA structure is capable of spontaneous branch migration, and is lost during standard DNA extraction protocols. In order to isolate and characterize recombination intermediates that contain Holliday junctions, we have developed a rapid protocol that restrains branch migration of four-way DNA junctions. The cationic detergent hex-adecyltrimethylammonium bromide is used to lyse cells and precipitate DNA. Manipulations are performed in the presence of the cations hexamine cobalt(III) or magnesium, which stabilize Holliday junctions in a stacked-X configuration that branch migrates very slowly. This protocol was evaluated using a sensitive assay for spontaneous branch migration, and was shown to preserve both artificial Holliday junctions and meiotic recombination intermediates containing four-way junctions.  相似文献   

18.
Design of immobile nucleic acid junctions   总被引:6,自引:1,他引:5       下载免费PDF全文
Nucleic acids that interact to generate structures in which three or more double helices emanate from a single point are said to form a junction. Such structures arise naturally as intermediates in DNA replication and recombination. It has been proposed that stable junctions can be created by synthesizing sets of oligonucleotides of defined sequence that can associate by maximizing Watson-Crick complementarity (Seeman N. C., 1981, Biomolecular Stereodynamics. Adenine Press, New York. 1: 269-278; Seeman, N. C., 1982, J. Theor. Biol. 99:237-247.) To make it possible to design molecules that will form junctions of specific architecture, we present here an efficient algorithm for generating nucleic acid sequences that optimize two fundamental properties: fidelity and stability. Fidelity refers to the relative probability of forming the junction complex relative to all alternative paired structures. Calculations are described that permit approximate prediction of the melting curves for junction complexes.  相似文献   

19.
In Escherichia coli, the RuvA and RuvB proteins interact at Holliday junctions to promote branch migration leading to the formation of heteroduplex DNA. RuvA provides junction-binding specificity and RuvB drives ATP-dependent branch migration. Since RuvB contains sequence motifs characteristic of a DNA helicase and RuvAB exhibit helicase activity in vitro, we have analysed the role of DNA unwinding in relation to branch migration. A mutant RuvB protein, RuvB(D113E), mutated in helicase motif II (the DExx box), has been purified to homogeneity. The mutant protein forms hexameric rings on DNA similar to those formed by wild-type protein and promotes branch migration in the presence of RuvA. However, RuvB(D113E) exhibits reduced ATPase activity and is severely compromised in its DNA helicase activity. Models for RuvAB-mediated branch migration that invoke only limited DNA unwinding activity are proposed.  相似文献   

20.
DNA junctions are by-products of recombinational repair, during which a damaged DNA sequence, assisted by RecA filament, invades an intact homologous DNA to form a joint molecule. The junctions are three-strand or four-strand depending on how many single DNA strands participate in joint molecules. In E. coli, at least two independent pathways to remove the junctions are proposed to operate. One is via RuvAB-promoted migration of four-strand junctions with their subsequent resolution by RuvC. In vivo, RuvAB and RuvC enzymes might work in a single complex, a resolvasome, to clean DNA from used RecA filaments and to resolve four-strand junctions. An alternative pathway for junction removal could be via RecG-promoted branch migration of three-strand junctions, provided that an as yet uncharacterized endonuclease activity incises one of the strands in the joint molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号