首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substantial evidence supports the notion that oxidative processes participate in the pathogenesis of atherosclerotic heart disease. Major evidence for myeloperoxidase (MPO) as enzymatic catalyst for oxidative modification of lipoproteins in the artery wall has been suggested in numerous studies performed with low-density lipoprotein. In contrast to low-density lipoprotein, plasma levels of high-density lipoprotein (HDL)-cholesterol and apoAI, the major apolipoprotein of HDL, inversely correlate with the risk of developing coronary artery disease. These antiatherosclerotic effects are attributed mainly to HDL's capacity to transport excess cholesterol from arterial wall cells to the liver during 'reverse cholesterol transport'. There is now strong evidence that HDL is a selective in vivo target for MPO-catalyzed oxidation impairing the cardioprotective and antiinflammatory capacity of this antiatherogenic lipoprotein. MPO is enzymatically active in human lesion material and was found to be associated with HDL extracted from human atheroma. MPO-catalyzed oxidation products are highly enriched in circulating HDL from individuals with cardiovascular disease where MPO concentrations are also increased. The oxidative potential of MPO involves an array of intermediate-generated reactive oxygen and reactive nitrogen species and the ability of MPO to generate chlorinating oxidants-in particular hypochlorous acid/hypochlorite-under physiological conditions is a unique and defining activity for this enzyme. All these MPO-generated reactive products may affect structure and function of HDL as well as the activity of HDL-associated enzymes involved in conversion and remodeling of the lipoprotein particle, and represent clinically useful markers for atherosclerosis.  相似文献   

2.
The 'oxidation theory' of atherosclerosis proposes that oxidation of low density lipoprotein (LDL) contributes to atherogenesis. Although the precise mechanisms of in vivo oxidation are widely unknown, increasing evidence suggests that myeloperoxidase (MPO, EC 1.11.1.7), a protein secreted by activated phagocytes, generates modified/oxidized (lipo)proteins via intermediate formation of hypochlorous acid (HOCl). In vitro generation of HOCl transforms lipoproteins into high uptake forms for macrophages giving rise to cholesterol-engorged foam cells. To identify HOCl-modified-epitopes in human plaque tissues we have raised monoclonal antibodies (directed against human HOCl-modified LDL) that do not cross-react with other LDL modifications, i.e. peroxynitrite-LDL, hemin-LDL, Cu2+-oxidized LDL, 4-hydroxynonenal-LDL, malondialdehyde-LDL, glycated-LDL, and acetylated-LDL. The antibodies recognized a specific epitope present on various proteins after treatment with OCl- added as reagent or generated by the MPO/H2O2/halide system. Immunohistochemical studies revealed pronounced staining for HOCl-modified-epitopes in fibroatheroma (type V) and complicated (type VI) lesions, while no staining was observed in aortae of lesion-prone location (type I). HOCl-oxidation-specific epitopes are detected in cells in the majority of atherosclerotic plaques but not in control segments. Staining was shown to be inside and outside monocytes/macrophages, endothelial cells, as well as in the extracellular matrix. A similar staining pattern using immunohistochemistry could be obtained for MPO. The colocalization of immunoreactive MPO and HOCl-modified-epitopes in serial sections of human atheroma (type IV), fibroatheroma (type V) and complicated (type VI) lesions provides further convincing evidence for MPO/H2O2/halide system-mediated oxidation of (lipo)proteins under in vivo conditions. We propose that MPO could act as an important link between the development of atherosclerotic plaque in the artery wall and chronic inflammatory events.  相似文献   

3.
Myeloperoxidase (MPO), a heme enzyme secreted by activated phagocytes, generates an array of oxidants proposed to play critical roles in host defense, tissues damage, and foam cell formation. Although neutrophils are the major source for MPO, the enzyme could be identified abundantly in circulating monocytes and monocytes/macrophages in rabbit lesions. MPO is the only enzyme known to generate hypochlorous acid (HOCl) and HOCl-modified lipoproteins have pronounced atherogenic and/or proinflammatory features in vivo and in vitro. Using specific monoclonal antibodies, HOCl-modified (lipo)proteins were detected in atherosclerotic plaques of heterozygous Watanabe heritable hyperlipidemic rabbits and to a lesser extent in a specific strain of New Zealand White rabbits with a high atherosclerotic response to hypercholesterolemia. Colocalization of immunoreactive MPO and HOCl-modified-epitopes in serial sections of rabbit lesions provides convincing evidence for MPO-H2O2-chloride system-mediated oxidation of (lipo)proteins under in vivo conditions. We propose that monocyte-derived MPO could connect chronic inflammatory conditions with arterial lipid/lipoprotein deposition during diet-induced atherogenesis in rabbits.  相似文献   

4.
Substantial evidence supports the notion that oxidative processes contribute to the pathogenesis of atherosclerosis and coronary heart disease. The nature of the oxidants that give rise to the elevated levels of oxidised lipids and proteins, and decreased levels of antioxidants, detected in human atherosclerotic lesions are, however, unclear, with multiple species having been invoked. Over the last few years, considerable data have been obtained in support of the hypothesis that oxidants generated by the heme enzyme myeloperoxidase play a key role in oxidation reactions in the artery wall. In this article, the evidence for a role of myeloperoxidase, and oxidants generated therefrom, in the modification of low-density lipoprotein, the major source of lipids in atherosclerotic lesions, is reviewed. Particular emphasis is placed on the reactions of the reactive species generated by this enzyme, the mechanisms and sites of damage, the role of modification of the different components of low-density lipoprotein, and the biological consequences of such oxidation on cell types present in the artery wall and in the circulation, respectively.  相似文献   

5.
Protein oxidation by phagocytic white blood cells is implicated in tissue injury during inflammation. One important target might be high-density lipoprotein (HDL), which protects against atherosclerosis by removing excess cholesterol from artery wall macrophages. In the human artery wall, cholesterol-laden macrophages are a rich source of myeloperoxidase (MPO), which uses hydrogen peroxide for oxidative reactions in the extracellular milieu. Levels of two characteristic products of MPO-chlorotyrosine and nitrotyrosine-are markedly elevated in HDL from human atherosclerotic lesions. Here, we describe how MPO-dependent chlorination impairs the ability of apolipoprotein A-I (apoA-I), HDL's major protein, to transport cholesterol by the ATP-binding cassette transporter A1 (ABCA1) pathway. Faulty interactions between apoA-I and ABCA1 are involved. Tandem mass spectrometry and investigations of mutated forms of apoA-I demonstrate that tyrosine residues in apoA-I are chlorinated in a site-specific manner by chloramine intermediates on suitably juxtaposed lysine residues. Plasma HDL isolated from subjects with coronary artery disease (CAD) also contains higher levels of chlorinated and nitrated tyrosine residues than HDL from healthy subjects. Thus, the presence of chlorinated HDL might serve as a marker of CAD risk. Because HDL damaged by MPO in vitro becomes dysfunctional, inhibiting MPO in vivo might be cardioprotective.  相似文献   

6.
Schmitt D  Shen Z  Zhang R  Colles SM  Wu W  Salomon RG  Chen Y  Chisolm GM  Hazen SL 《Biochemistry》1999,38(51):16904-16915
The initiation of lipid peroxidation and the concomitant formation of biologically active oxidized lipids and sterols is believed to play a central role in the pathogenesis of inflammatory and vascular disorders. Here we explore the role of neutrophil- and myeloperoxidase (MPO)-generated nitrating intermediates as a physiological catalyst for the initiation of lipid peroxidation and the formation of biologically active oxidized lipids and sterols. Activation of human neutrophils in media containing physiologically relevant levels of nitrite (NO(2)(-)), a major end product of nitric oxide (nitrogen monoxide, NO) metabolism, generated an oxidant capable of initiating peroxidation of lipids. Formation of hydroxy- and hydroperoxyoctadecadienoic acids [H(P)ODEs], hydroxy- and hydroperoxyeicosatetraenoic acids [H(P)ETEs], F(2)-isoprostanes, and a variety of oxysterols was confirmed using on-line reverse phase HPLC tandem mass spectrometry (LC/MS/MS). Lipid oxidation by neutrophils required cell activation and NO(2)(-), occurred in the presence of metal chelators and superoxide dismutase, and was inhibited by catalase, heme poisons, and free radical scavengers. LC/MS/MS studies demonstrated formation of additional biologically active lipid and sterol oxidation products known to be enriched in vascular lesions, such as 1-hexadecanoyl-2-oxovalaryl-sn-glycero-3-phosphocholine, which induces upregulation of endothelial cell adhesion and chemoattractant proteins, and 5-cholesten-3beta-ol 7beta-hydroperoxide, a potent cytotoxic oxysterol. In contrast to the oxidant formed during free metal ion-catalyzed reactions, the oxidant formed during MPO-catalyzed oxidation of NO(2)(-) readily promoted lipid peroxidation in the presence of serum constituents. Collectively, these results suggest that phagocytes may employ MPO-generated reactive nitrogen intermediates as a physiological pathway for initiating lipid peroxidation and forming biologically active lipid and sterol oxidation products in vivo.  相似文献   

7.
Myeloperoxidase (MPO) is an oxidant-generating enzyme present in macrophages at atherosclerotic lesions and implicated in coronary artery disease (CAD). Although mouse models are important for investigating the role of MPO in atherosclerosis, neither mouse MPO nor its oxidation products are detected in lesions in murine models. To circumvent this problem, we generated transgenic mice expressing two functionally different human MPO alleles, with either G or A at position -463, and crossed these to the LDL receptor-deficient (LDLR(-/-)) mouse. The -463G allele is linked to higher MPO expression and increased CAD incidence in humans. Both MPO alleles were expressed in a subset of lesions in high-fat-fed LDLR(-/-) mice, notably at necrotic lesions with cholesterol clefts. MPOG-expressing LDLR(-/-) males (but not females) developed significantly higher serum cholesterol, triglycerides, and glucose, all correlating with increased weight gain/obesity, implicating MPO in lipid homeostasis. The MPOG- and MPOA-expressing LDLR(-/-) males also exhibited significantly larger aortic lesions than control LDLR(-/-) males. The human MPO transgenic model will facilitate studies of MPO involvement in atherosclerosis and lipid homeostasis.  相似文献   

8.
High plasma levels of apolipoprotein A-I (apoA-I) correlate with cardiovascular health, whereas dysfunctional apoA-I is a cause of atherosclerosis. In the atherosclerotic plaques, amyloid deposition increases with aging. Notably, apoA-I is the main component of these amyloids. Recent studies identified high levels of oxidized lipid-free apoA-I in atherosclerotic plaques. Likely, myeloperoxidase (MPO) secreted by activated macrophages in atherosclerotic lesions is the promoter of such apoA-I oxidation. We hypothesized that apoA-I oxidation by MPO levels similar to those present in the artery walls in atherosclerosis can promote apoA-I structural changes and amyloid fibril formation. ApoA-I was exposed to exhaustive chemical (H2O2) oxidation or physiological levels of enzymatic (MPO) oxidation and incubated at 37 °C and pH 6.0 to induce fibril formation. Both chemically and enzymatically oxidized apoA-I produced fibrillar amyloids after a few hours of incubation. The amyloid fibrils were composed of full-length apoA-I with differential oxidation of the three methionines. Met to Leu apoA-I variants were used to establish the predominant role of oxidation of Met-86 and Met-148 in the fibril formation process. Importantly, a small amount of preformed apoA-I fibrils was able to seed amyloid formation in oxidized apoA-I at pH 7.0. In contrast to hereditary amyloidosis, wherein specific mutations of apoA-I cause protein destabilization and amyloid deposition, oxidative conditions similar to those promoted by local inflammation in atherosclerosis are sufficient to transform full-length wild-type apoA-I into an amyloidogenic protein. Thus, MPO-mediated oxidation may be implicated in the mechanism that leads to amyloid deposition in the atherosclerotic plaques in vivo.  相似文献   

9.
Cell signaling by reactive nitrogen and oxygen species in atherosclerosis   总被引:10,自引:0,他引:10  
The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.  相似文献   

10.
Eosinophils are uniquely endowed with an arsenal of enzymes that enable them to generate an array of reactive oxidants and diffusible radical species. The formidable arsenal at their disposal likely evolved because of the central role these phagocytes play in combating invading helminths and other large metazoan pathogens. Although these leukocytes constitute an essential component of the effector limb of host defenses, they also are implicated in contributing to inflammatory tissue injury. The growing prevalence and severity of asthma, a respiratory disease characterized by recruitment and activation of eosinophils in the airways of affected individuals, has focused research efforts on elaborating the many potential mechanisms through which eosinophils may contribute to tissue injury and oxidative modification of biological targets in asthma. Eosinophil activation is strongly suspected as playing a contributory role in the pathogenesis of asthma. Accordingly, an understanding of the basic chemical pathways available to the leukocytes for generating specific reactive oxidants and diffusible radical species in vivo is required. In the following review, recent progress in the elaboration of specific mechanisms through which eosinophils generate oxidants and other reactive species are discussed. The potential contributions of these intermediates to modification of biological targets during asthma are described. Particular emphasis is placed upon the secreted hemoprotein eosinophil peroxidase (EPO), a central participant in generation of reactive oxidants and diffusible radical species by the phagocytes.  相似文献   

11.
Myeloperoxidase (MPO), an abundant enzyme in phagocytes, has been implicated in the pathogenesis of various inflammatory diseases including atherosclerosis. The major oxidant produced by MPO, hypochlorous acid (HOCl), is able to modify a great variety of biomolecules by chlorination and/or oxidation. In this paper the reactions of lipids (preferentially unsaturated fatty acids and cholesterol) with either reagent HOCl or HOCl generated by the MPO-hydrogen peroxide-chloride system are reviewed. One of the major issues has been whether the reaction of HOCl with lipids of low density lipoprotein (LDL) yields predominantly chlorohydrins or lipid hydroperoxides. Electrospray mass spectrometry provided direct evidence that chlorohydrins rather than peroxides are the major products of HOCl- or MPO-treated LDL phosphatidylcholines. Nevertheless lipid peroxidation is a possible alternative reaction of HOCl with polyunsaturated fatty acids if an additional radical source such as pre-formed lipid hydroperoxides is available. In phospholipids carrying a primary amino group such as phosphatidylethanolamine chloramines are the preferred products compared to chlorohydrins. Cholesterol can be converted by HOCl to great variety of oxysterols besides three isomers of chlorohydrins. For the situation in vivo it appears that the type of reaction occurring between HOCl and lipids would very much depend on the circumstances, e.g. the pH and the presence of radical initiators. The biological effects of lipid chlorohydrins are not yet well understood. It has been shown that chlorohydrins of both unsaturated fatty acids as well as of cholesterol may cause lysis of target cells, possibly by disruption of membrane structures.  相似文献   

12.
Oxidative stress has been implicated in the development and progression of atherosclerotic lesions. Significant increase of reactive oxygen species production by vascular cells can lead to progression of atherosclerotic lesions and development of unstable plaques due to triggering the apoptosis of endothelial and smooth muscle cells, expression of matrix metalloproteases and inflammatory cytokines. Cytolysis NAD(P)H-dependent oxidases appeared to be involved in reactive oxygen species production in the vascular network. Understanding of functions and regulation of individual NAD(P)H oxidases in atherosclerotic lesions can facilitate the development of novel therapeutic strategy for treating atherosclerosis. This review summarizes current data regarding expression, regulation and pathophysiological significance of these enzymes during development and progression of human atherosclerotic lesions.  相似文献   

13.
Epidemiological and biochemical studies infer that oxidative processes, including the oxidation of low-density lipoprotein (LDL), are involved in atherosclerosis. Vitamin E has been the focus of several large supplemental studies of cardiovascular disease, yet its potential to attenuate or even prevent atherosclerosis has not been realised. The scientific rationale for vitamin E supplements protecting against atherosclerosis is based primarily on the oxidation theory of atherosclerosis, the assumption that vitamin E becomes depleted as disease progresses, and the expectation that vitamin E prevents the oxidation of LDL in vivo and atherogenic events linked to such oxidation. However, it is increasingly clear that the balance between vitamin E and other antioxidants may be crucial for in vivo antioxidant protection, that vitamin E is only minimally oxidised and not deficient in atherosclerotic lesions, and that vitamin E is not effective against two-electron oxidants that are increasingly implicated in both early and later stages of the disease. It also remains unclear as to whether oxidation plays a bystander or a casual role in atherosclerosis. This lack of knowledge may explain the ambivalence of vitamin E and other antioxidant supplementation in atherosclerosis.  相似文献   

14.
The oxidation hypothesis of atherosclerosis proposes that oxidized LDL is a major causative factor in the development of atherosclerosis. Although this hypothesis has received strong mechanistic support and many animal studies demonstrated profound atheroprotective effects of antioxidants, which reduce LDL oxidation, the results of human clinical trials with antioxidants were mainly negative, except in selected groups of patients with clearly increased systemic oxidative stress. We propose that even if reducing lipoprotein oxidation in humans might be difficult to achieve, deeper understanding of mechanisms by which oxidized LDL promotes atherosclerosis and targeting these specific mechanisms will offer novel approaches to treatment of cardiovascular disease. In this review article, we focus on oxidized cholesteryl esters (OxCE), which are a major component of minimally and extensively oxidized LDL and of human atherosclerotic lesions. OxCE and OxCE-protein covalent adducts induce profound biological effects. Among these effects, OxCE activate macrophages via toll-like receptor-4 (TLR4) and spleen tyrosine kinase and induce macropinocytosis resulting in lipid accumulation, generation of reactive oxygen species and secretion of inflammatory cytokines. Specific inhibition of OxCE-induced TLR4 activation, as well as blocking other inflammatory effects of OxCE, may offer novel treatments of atherosclerosis and cardiovascular disease. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.  相似文献   

15.
Carr AC  Myzak MC  Stocker R  McCall MR  Frei B 《FEBS letters》2000,487(2):176-180
Myeloperoxidase (MPO), an abundant heme enzyme released by activated phagocytes, catalyzes the formation of a number of reactive species that can modify low-density lipoprotein (LDL) to a form that converts macrophages into lipid-laden or 'foam' cells, the hallmark of atherosclerotic lesions. Since MPO has been shown to bind to a number of different cell types, we investigated binding of MPO to LDL. Using the precipitation reagents phosphotungstate or isopropanol, MPO co-precipitated with LDL, retaining its catalytic activity. The association of MPO with LDL was confirmed using native gel electrophoresis. MPO was also found to co-precipitate with apolipoprotein B-100-containing lipoproteins in whole plasma. No precipitation of MPO was observed in lipoprotein-deficient plasma, and there was a dose-dependent increase in precipitation following addition of LDL to lipoprotein-deficient plasma. Binding of MPO to LDL could potentially enhance site-directed oxidation of the lipoprotein and limit scavenging of reactive oxygen species by antioxidants.  相似文献   

16.
Previous studies focused on catalyzed oxidation of (bi)sulfite, leading to the formation of the reactive sulfur trioxide (SO3), peroxymonosulfate (O3SOO), and sulfate (SO4•−) anion radicals, which can damage target proteins and oxidize them to protein radicals. It is known that these very reactive sulfur- and oxygen-centered radicals can be formed by oxidation of (bi)sulfite by peroxidases. Myeloperoxidase (MPO), an abundant heme protein secreted from activated neutrophils that play a central role in host defense mechanisms, allergic reactions, and asthma, is a likely candidate for initiating the respiratory damage caused by sulfur dioxide. The objective of this study was to examine the oxidative damage caused by (bi)sulfite-derived free radicals in human neutrophils through formation of protein radicals. We used immuno-spin trapping and confocal microscopy to study the protein oxidations driven by sulfite-derived radicals. We found that the presence of sulfite can cause MPO-catalyzed oxidation of MPO to a protein radical in phorbol 12-myristate 13-acetate-activated human neutrophils. We trapped the MPO-derived radicals in situ using the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide and detected them immunologically as nitrone adducts in cells. Our present study demonstrates that myeloperoxidase initiates (bi)sulfite oxidation leading to MPO radical damage, possibly leading to (bi)sulfite-exacerbated allergic reactions.  相似文献   

17.
Abstract

Eosinophils are uniquely endowed with an arsenal of enzymes that enable them to generate an array of reactive oxidants and diffusible radical species. The formidable arsenal at their disposal likely evolved because of the central role these phagocytes play in combating invading helminths and other large metazoan pathogens. Although these leukocytes constitute an essential component of the effector limb of host defenses, they also are implicated in contributing to inflammatory tissue injury. The growing prevalence and severity of asthma, a respiratory disease characterized by recruitment and activation of eosinophils in the airways of affected individuals, has focused research efforts on elaborating the many potential mechanisms through which eosinophils may contribute to tissue injury and oxidative modification of biological targets in asthma. Eosinophil activation is strongly suspected as playing a contributory role in the pathogenesis of asthma. Accordingly, an understanding of the basic chemical pathways available to the leukocytes for generating specific reactive oxidants and diffusible radical species in vivo is required. In the following review, recent progress in the elaboration of specific mechanisms through which eosinophils generate oxidants and other reactive species are discussed. The potential contributions of these intermediates to modification of biological targets during asthma are described. Particular emphasis is placed upon the secreted hemoprotein eosinophil peroxidase (EPO), a central participant in generation of reactive oxidants and diffusible radical species by the phagocytes.  相似文献   

18.
J W Heinecke 《FASEB journal》1999,13(10):1113-1120
Oxidatively damaged low density lipoprotein (LDL) may play an important role in atherogenesis, but the physiologically relevant pathways have proved difficult to identify. Mass spectrometric quantification of stable compounds that result from specific oxidation reactions represents a powerful approach for investigating such mechanisms. Analysis of protein oxidation products isolated from atherosclerotic lesions implicates tyrosyl radical, reactive nitrogen species, and hypochlorous acid in LDL oxidation in the human artery wall. These observations provide chemical evidence for the reaction pathways that promote LDL oxidation and lesion formation in vivo.--Heinecke, J. W. Mass spectrometric quantification of amino acid oxidation products in proteins: insights into pathways that promote LDL oxidation in the human artery wall.  相似文献   

19.
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL   总被引:1,自引:0,他引:1  
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.  相似文献   

20.
Oxidized low-density lipoprotein (LDL) is implicated in atherogenesis, but the mechanisms that oxidize LDL in the human artery wall have proven difficult to identify. A powerful investigative approach is mass spectrometric quantification of the oxidized amino acids that are left in proteins by specific oxidation reactions. Comparison of these molecular fingerprints in biological samples with those produced in proteins by various in vitro oxidation systems can indicate which biochemical pathway has created damage in vivo. For example, the pattern of oxidized amino acids in proteins isolated from atherosclerotic lesions implicates reactive intermediates generated by myeloperoxidase, a major phagocyte enzyme. These intermediates include hypochlorous acid, tyrosyl radical, and reactive nitrogen species, each of which generates a different pattern of stable end products. Despite this strong evidence that myeloperoxidase promotes LDL oxidation in vivo, the antioxidant that has been tested most extensively in clinical trials, vitamin E, fails to inhibit myeloperoxidase pathways in vitro. Because the utility of an antioxidant depends critically on the nature of the pathway that inflicts tissue damage, interventions that specifically inhibit myeloperoxidase or other physiologically relevant pathways would be more logical candidates for the prevention of cardiovascular disease. Moreover, levels of oxidized amino acids in urine and plasma might reflect those in tissues and therefore identify individuals with high levels of oxidative stress. Trials with such subjects would seem more likely to uncover effective antioxidant therapies than trials involving the general population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号