首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human T-lymphoblast cell line, Mo, secretes a number of lymphokines, including erythroid-potentiating activity (EPA), an important early regulator of erythropoiesis. We report purification of EPA to homogeneity, from serum-free Mo-conditioned medium. Purification was accomplished by sequential concentration, ammonium sulfate precipitation, lentil lectin affinity chromatography, gel filtration, and reverse-phase high-performance liquid chromatography. EPA was assayed by its ability to stimulate the growth of large erythroid colonies (bursts) from normal human peripheral blood. The purified EPA has a molecular weight of 28,000 and appears as a single band when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or nonreducing conditions. Purified EPA stimulates the growth of both early and late erythroid precursors from human bone marrow, as well as colony formation by the K562 human erythroleukemia cell line. Purified EPA has no colony-stimulating factor activity nor does it appear to be a structural protein of the human T-cell leukemia virus subtype II which infects the Mo cells.  相似文献   

2.
Summary A new method has been developed for the precise identification of human bone marrow colony forming unit erythroid (CFU-E) and burst forming unit erythroid (BFU-E) colonies, and for determination of the hemoglobin contents using microcytofluorometry. The method relies on a photochemical reaction in which intracellular hemoglobin is converted into fluorescent porphyrin under violet light (=405 nm) in the presence of an SH-donor (mercaptoethylamine hydrochloride). The CFU-E and BFU-E colonies showed red fluorescence with two spectrum peaks at 600 and 650 nm when illuminated by violet light. These two peaks are consistent with those of porphyrin fluorescence. The porphyrin fluorescence was not inducible in colony forming unit granulocyte-macrophage (CFU-GM) colonies, while 20% of the CFU-GM colonies were false positive with respect to the conventional benzidine reaction. The photochemically inducible fluorescence began to appear in BFU-E colonies on the 4th day of culture, while the same colonies started to be positive for the benzidine reaction on the 9th day. Therefore, the photochemical reaction was more specific and sensitive than the benzidine reaction for the identification of CFU-E and BFU-E colonies. In addition, this method enabled us to measure the hemoglobin level in the cells forming the colonies because the intensity of the fluorescence was proportional to the amount of hemoglobin when the photochemical reaction was carried out for 50 min. As a result of qualitative and quantitative analysis of CFU-E colonies by this method, it was possible to detect the hemoglobin levels in the colonies from 1 of 4 cases of untreated acute nonlymphocytic leukemia and from 2 of 4 cases of myelodysplastic syndrome in which the hemoglobin levels were too low to be detected by the benzidine reaction. These cases, where the CFU-E colonies showed very low levels of hemoglobin, were associated with poor prognosis. Thus, our method is useful for identifying CFU-E colonies, determining their hemoglobin synthesis, and as a cue to predict the clinical course of the patients.  相似文献   

3.
N Maruo  M Ozawa  M Kondo  S Fujita 《Histochemistry》1990,94(3):257-262
A new method has been developed for the precise identification of human bone marrow colony forming unit erythroid (CFU-E) and burst forming unit erythroid (BFU-E) colonies, and for determination of the hemoglobin contents using microcytofluorometry. The method relies on a photochemical reaction in which intracellular hemoglobin is converted into fluorescent porphyrin under violet light (lambda = 405 nm) in the presence of an SH-donor (mercaptoethylamine hydrochloride). The CFU-E and BFU-E colonies showed red fluorescence with two spectrum peaks at 600 and 650 nm when illuminated by violet light. These two peaks are consistent with those of porphyrin fluorescence. The porphyrin fluorescence was not inducible in colony forming unit granulocyte-macrophage (CFU-GM) colonies, while 20% of the CFU-GM colonies were false positive with respect to the conventional benzidine reaction. The photochemically inducible fluorescence began to appear in BFU-E colonies on the 4th day of culture, while the same colonies started to be positive for the benzidine reaction on the 9th day. Therefore, the photochemical reaction was more specific and sensitive than the benzidine reaction for the identification of CFU-E and BFU-E colonies. In addition, this method enabled us to measure the hemoglobin level in the cells forming the colonies because the intensity of the fluorescence was proportional to the amount of hemoglobin when the photochemical reaction was carried out for 50 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Bone marrow from mature goats and sheep was cultured in plasma clots, and three erythropoietin (ESF)-dependent responses-growth (colony formation), differentiation (globin production), and initiation of hemoglobin C (alpha2beta2C) synthesis--were quantitated. ESF concentrations below 0.01 U/ml supported colony growth and adult hemoglobin production in cultures of goat marrow, while maximal hemoglobin C synthesis (70%), as measured between 72 and 96 h in culture, required a 100-fold higher ESF concentration. Sheep marrow was cultured in a medium enriched to enhance growth and to permit complete maturation of colonies. These colonies active in hemoglobin synthesis between 24 and 96 h produced mainly adult hemoglobin, and only between 96 and 120 h did sheep colonies develop which produced mainly hemoglobin C (up to 70%). A similar heterogeneity may exist among goat colonies. Thus, when goat bone marrow was fractionated by unit gravity sedimentation, more hemoglobin C synthesis was observed in colonies derived from cells of intermediate sedimentation velocity than in colonies derived from the most rapidly sedimenting cells. Brief exposure of sheep (in vivo) and goat (in vitro) bone marrow to a high ESF concentration committed precursor cells to the generation of colonies which, even at low ESF concentration, produced hemoglobin C. Committment to hemoglobin phenotype appears to be an early and probably irreversible event in the development of an erythroid cell.  相似文献   

5.
Erythroid colonies were generated in response to erythropoietin in plasma clot cultures of sheep and goat bone marrow cells. At low concentration erythropoietin only hemoglobin A (betaA globin) was synthesized in goat cultures, but at high concentrations 50% of the hemoglobin synthesized was hemoglobin C (betaC globin). This effect of erythropoietin on the expression of a specific beta globin gene was manifested only after 72 h in vitro and followed the development of erythroid colonies. Sheep colonies behaved differently from those of goat in that little or no betaC globin synthesis occurred even at high erythropoietin concentration. To investigate this difference, sheep marrow cells were fractionated by unit gravity sedimentation. The erythroid colony-forming cells sedimented more rapidly (3.5-6mm/h) than the hemoglobinized eththroid precursors (1-3.5 mm/h), suggesting that the colonies were formed from an early erythroid precursor, However, the colonies formed from the sheep marrow fractions synthesized only betaA globin even at concentrations of erythropoietin sufficient to stimulate betaC globin synthesis in goat colonies. Morphologically, the goat colonies were larger and more mature than those of the sheep. By 96 h in vitro three-fourths of the goat colonies contained enucleated red cells compared to only 3% of the sheep colonies. Thus, erythropoietin had an equivalent effect in stimulating erythroid colony growth from the marrow of both species although there were both biochemical and morphological differences between the colonies. Hemoglobin switching appeared to require exposure of an early precursor to high erythropoietin concentration, but the results with sheep marrow suggested that the rate of colony growth and cellular maturation might also be important.  相似文献   

6.
We have examined a serum-deprived culture system in order to verify that it is suitable for the study of burst forming unit erythroid (BFU-E) progenitor cells from premature neonates. Optimum growth of BFU-E from premature neonates was observed with each media constituent using the same concentration as that previously described for adult subjects. Growth of immature BFU-E from premature neonates were highly dependant upon a source of Burst Promoting Activity and mature BFU-E derived colonies emerged at day 12 compared to day 14 in adults. Our preliminary results with the validated medium suggest that premature infants have increased peripheral blood concentrations of BFU-E compared to healthy adult controls.Abbreviations Ad Adherent cells - BPA Burst promoting activity - BFU-E Burst forming unit erythroid - Epo Erythropoietin - IL3 Interleukin-3 - LDC Low density (<1.077 g ml1) peripheral blood mononuclear cells  相似文献   

7.
The course of the differentiation and proliferation of the human erythroid burst-forming units (BFU-E) to colony-forming units (CFU-E) was directly investigated using a combination of highly purified BFU-E, a liquid culture system, and the following clonal assay. Highly purified human blood BFU-E with a purity of 45-79% were cultured in liquid medium with recombinant human erythropoietin (rEP) and recombinant human interleukin-3 (rIL-3) to generate more differentiated erythroid progenitors. The cultured cells were collected daily for investigating the morphology, the increment in the number of cells and the clonality. Ninety percent of purified BFU-E required not only rEP but also rIL-3 for clonal development. By 7 days of liquid culture, the total cell number increased 237 +/- 20-fold above the starting cells, while erythroid progenitors increased 156 +/- 74-fold. As the incubation time in liquid culture increased, the cells continuously differentiated in morphology. Replating experiments with rEP combined with or without rIL-3 showed the following: 1) The number of erythroblasts that were part of erythroid colonies decreased with accompanying erythroid progenitor differentiation and proliferation. 2) As the incubation time in liquid culture increased, erythroid progenitors had a graded loss of their dependency on rIL-3 and a complete loss of dependency was observed after 3 days of liquid culture. At that time 85% of the erythroid progenitors gave rise to colonies of more than 100 erythroblasts which were equivalent to mature BFU-E. These studies provide a quantitative assessment of the loss of IL-3 dependency by BFU-E and indicate that the size of the generated erythroid colonies and their IL-3 requirement correlate with the erythroid differentiated state.  相似文献   

8.
tsAEV-LSCC HD3 chicken erythroid cells transformed by the avian erythroblastosis virus (AEV) secrete an autocrine differentiation-inhibiting factor, ADIF, which blocks differentiation without affecting proliferation of the chicken erythroid cells that synthesize and secrete it into the culture medium. The chicken erythroleukemia cell ADIF activity is not restricted to avians. It prevents dimethylsulfoxide (DMSO) from stimulating murine Friend erythroleukemia cells to synthesize hemoglobin. ADIF also blocks erythroid differentiation in normal human and murine bone marrow where it selectively targets the early BFU-E (burst-forming) erythroid precursor cells without affecting the more advanced CFU-E erythroid precursor cells or cells of the different granulocyte-macrophage lineage.  相似文献   

9.
M C Datta 《Prostaglandins》1985,29(4):561-577
The effects of prostaglandin E2 (PGE2) in association with erythropoietin on the synthesis of fetal and adult hemoglobin in peripheral blood-derived erythroid burst colonies from normal adults and from patients with sickle cell anemia were investigated. The synthesized hemoglobin at the end of 8, 14 or 18 days in culture was separated by DEAE-cellulose chromatography of 35S-methionine labelled hemoglobin. Quantitative estimation of the synthesized hemoglobin phenotypes, for the three indicated culture periods, showed preferential synthesis of Hb F in addition to an overall increase in hemoglobin synthesis in PGE2 treated colonies. Furthermore, the reactivation of fetal hemoglobin production by PGE2 was more pronounced when the adherent cells were included in the culture dishes. These results indicate that the addition of PGE2 to culture dishes presumably constitutes an environmental change to promote the functional changes seen in the blood erythroid bursts in terms of Hb synthesis and switching.  相似文献   

10.
Erythroid progenitors from normal human marrow were purified by a two-step immune panning method permitting both the enrichment of erythroid progenitors (plating efficiency up to 10%) and the separation of CFU-E from BFU-E. The purified erythroid progenitors were grown in serum-replaced conditions; in some experiments at an average of one cell per well. Human recombinant granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin 3 (IL3), erythroid potentiating activity (EPA), and human erythropoietin (Epo) either recombinant or homogenous native were tested for their effect on CFU-E growth. Epo was an absolute requirement for CFU-E growth and was sufficient to obtain colony formation at the unicellular level whereas GM-CSF and IL3 did not further increase the plating efficiency. EPA potentiated the effect of Epo on this progenitor only in experiments performed at unicellular level. Human recombinant GM-CSF, IL3, Interleukin 1 alpha (IL1 alpha), and Epo were subsequently tested for their ability to promote BFU-E growth. GM-CSF and IL3 supported the growth of erythroid bursts in the presence of Epo, even at the unicellular level. However, IL3 promoted a higher number of bursts than GM-CSF under all conditions tested. These two growth factors have no or very small additive effects when tested in combination. IL1 alpha added to Epo alone had no effect on the growth of BFU-E whereas it potentiated the combined action of IL3 and GM-CSF on the primitive BFU-E. In conclusion, this study confirms at the unicellular level and under serum-free conditions that erythroid progenitors are regulated by multipotential growth factors in early phases of erythropoiesis and become sensitive only to Epo in later phases of differentiation.  相似文献   

11.
Circulating erythroid progenitors from 14 patients with acute lymphoblastic leukemia (ALL) and from 8 healthy subjects were studied in culture to determine the frequency and size of CFU-E- and BFU-E-derived colonies. Cells were cultured in a plasma clot system, and hemoglobinized colonies identified by diaminobenzidine reaction. The numbers of CFU-E and BFU-E per milliliter of peripheral blood were greatly increased in 10 patients when compared to controls. In 13 patients, the size distribution of BFU-E-derived colonies, analyzed by counting the number of subunits in each colony, was also found to differ significantly from controls, with a large excess of small colonies and a low percentage or a total lack of large colonies. This abnormal BFU-E size distribution was partially corrected, in the 5 patients tested, by the addition to the culture medium of 10% phytohemagglutinin-leukocyte-conditioned medium (PHA-LCM). Bone marrow crowding out of the normal progenitors, as well as disturbances in the cellular interactions involved in their normal development, most likely explain these results and these factors could be implicated in the frequent pancytopenia of ALL.  相似文献   

12.
The relative synthesis of globin chains (α,β,Gγ,Aγ) has been comparatively evaluated in erythroid colonies from 26 fetal livers (7–15 gestational week) and 13 ‘normal’ adult marrows. Clusters deriving from erythroid colony-forming units (CFU-E) were analysed either individually or in pools of –20 colonies. Bursts deriving from earlier erythroid progenitors (erythroid burst-forming unit, ‘primitive’ or ‘mature’, P-BFU-E or M-BFU-E, respectively) were always analysed individually. Since γ-globin synthesis peaks earlier than β-chain production in both the fetal and the adult erythroblastic pathway, the globin synthetic pattern has been comparatively evaluated, in so far as possible, in colonies at an homogenous, advanced stage of hemoglobinization.In fetal liver cultures, the relative β-synthesis in CFU-E clusters, M- and P-BFU-E bursts constantly shows low, fairly uniform values. In adult marrow cultures, the relative γ-production in the corresponding three classes of colonies is characterized by low, rather homogeneous levels (except for more elevated γ-synthetic values occasionally observed in pooled CFU-E clusters comprising a majority of poorly-hemoglobinized colonies). A gradual decrease of relative γ-production has never been observed in colonies deriving from progressively more differentiated erythroid progenitors of both fetal and adult origin.These results suggest that fetal and adult BFU-E are endowed respectively with a program for prevailing HbF or HbA synthesis, which is not substantially modulated at the level of erythroid progenitors under standard culture conditions. By implication, it is postulated that, in fetal and more particularly adult age, modulation of globin synthesis is mediated via mechanism(s) acting at the level of erythroblasts, i.e. at the level of the early γ- and the late β-synthesis in their maturation pathway. The Hb switch (i.e. the switch from prevailingly HbF to HbA synthesis program) is possibly dependent on the ontogenic ‘maturation’ of BFU-E (and/or stem cells), which peaks in the perinatal period.  相似文献   

13.
Purified recombinant human (rhu) IL-1 alpha and IL-1 beta were evaluated for their effects on the proliferation and survival of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells from normal human bone marrow (BM). Using nonadherent low density T lymphocyte depleted (NALT-) BM cells cultured in the presence or absence of IL-1, CSF-deprivation studies demonstrated that IL-1 alpha or IL-1 beta by itself did not enhance the proliferation of CFU-GM or BFU-E. They did, however, promote the survival of progenitors responding to the delayed addition of media conditioned by the 5637 cell line (5637 conditioned medium), rhu GM-CSF and erythropoietin. The survival promoting effects of IL-1 alpha on CFU-GM and BFU-E were neutralized by anti-IL-1 alpha mAb added to the cultures. The survival promoting effect of IL-1 alpha did not appear to be mediated by CSF, because neither CSF nor erythroid burst promoting activity were detectable in cultures in which NALT- cells were incubated with rhuIL-1 alpha. In addition, suboptimal concentrations of rhu macrophage CSF (CSF-1), G-CSF, GM-CSF, and IL-3, which were just below the levels that would stimulate colony formation, did not enhance progenitor cell survival. Survival of CFU-GM and BFU-E in low density (LD) bone marrow cells did not decrease as drastically as that in NALT- BM cells, and exogenously added IL-1 did not enhance progenitor cell survival of CFU-GM and BFU-E in LD BM cells. However, addition of anti-IL-1 beta decreased survival of CFU-GM and BFU-E in LD BM cells. These results implicate IL-1 in the prolonged survival of human CFU-GM and BFU-E.  相似文献   

14.
The effects of prostaglandin E2 (PGE2) in association with erythropoietin on the synthesis of fetal and adult hemoglobin in peripheral blood-derived erythroid burst colonies from normal adults and from patients with sickle cell anemia were investigated. The synthesized hemoglobin at the end of 8, 14 or 18 days in culture was separated by DEAE-cellulose chromatography of 35S-methione labelled hemoglobin. Quantitative estimation of the synthesized hemoglobin phenotypes, for the three indicated culture periods, showed preferential synthesis of Hb F in addition to an overall increase in hemoglobin synthesis in PGE2 treated colonies. Furthermore, the reactivation of fetal hemoglobin production by PGE2 was more pronounced when the adherent cells were included in the culture dishes. These results indicate that the addition of PGE2 to culture dishes presumably constitutes an environmental change to promote the functional seen in the blood erythroid bursts in terms of Hb synthesis and switching.  相似文献   

15.
Chicken erythroblast cell strains and a cell line transformed by ts mutants of avian erythroblastosis virus (AEV) terminally differentiate when shifted to the nonpermissive temperature (42°C). The differentiated cells resemble mature erythrocytes with respect to morphology and ultrastructure, expression of differentiation-specific cell-surface antigens, pattern of protein synthesis and hemoglobin content. Terminal differentiation is dependent on conditions favoring the differentiation of normal erythroid progenitor cells, including an erythropoietin-like factor. Colonies of ts AEV cells grown at 42°C in semisolid medium resemble erythrocyte colonies derived from normal erythroid progenitor cells. The colonies obtained were comparable in size or slightly larger than the late erythroid precursor (CFU-E) colonies. These results suggest that AEV-transformed cells are blocked at a stage of differentiation that is more advanced than that of the uninfected target cells. ts AEV cells are irreversibly committed to terminal differentiation within 20 to 30 hr after shift to 42°C.  相似文献   

16.
We studied the effect of natural and synthetic androgens on children's erythropoietic precursor cells in culture. Cultures of normal marrow were carried out according to a miniaturized methylcellulose method in the presence of erythropoietin. We then evaluated the effects of testosterone, nortestosterone, fluoxymesterone and etiocholanolone (10(-9)-10(-6) M) on erythroid colony-forming units (CFU-E) and burst-forming units (BFU-E). Androgen-induced growth of erythroid progenitors was quantified by directly scoring colonies and by a biochemical determination of the uroporphyrinogen I synthase activity (UROS). We observed a significant increase (p less than or equal to 0.05) in the number of CFU-E and BFU-E and in the UROS activity of derived colonies in the presence of androgens (10(-8) or 10(-7)M). This microculture assay could be useful not only to study the effect of androgens on erythroid progenitor cells in culture, but also to predict the best androgenic treatment of anemia in children and adults.  相似文献   

17.
The influences of TNF alpha and TNF beta were evaluated for their stimulatory and inhibitory effects on in vitro colony formation by human bone marrow granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and multipotential (CFU-GEMM) progenitor cells. Both TNF alpha and TNF beta induced fibroblasts to produce stimulators of CFU-GM, BFU-E, and CFU-GEMM in a dose-dependent fashion. Similar results were seen when equivalent concentrations of TNF alpha and TNF beta were used. Prior incubation of the TNF alpha and TNF beta with their respective antibodies inactivated the ability of the TNF preparations to induce the release of granulocyte-macrophage, erythroid, and multipotential colony-stimulating activity from fibroblasts. In addition, incubation of the TNF-induced fibroblast supernatant with antibody before colony assay resulted in enhanced colony formation, suggesting that the TNF carried over into the colony assay suppressed colony formation. Additional proof of this suppression by TNF was evident when TNF was added directly to the CFU-GM, BFU-E, and CFU-GEMM colony assays. IL-1 does not appear to function as an intermediary in growth factor production by fibroblasts stimulated with TNF because antibody to IL-1 displayed no effect. Furthermore, assay of TNF-induced fibroblast supernatant was negative for IL-1. These results suggest that TNF alpha and TNF beta exert both a positive and negative influence on in vitro hemopoietic colony formation.  相似文献   

18.
Treatment of the Friend erythroleukemic (FL) cell line GM979 with dimethyl sulfoxide (DMSO) or n-butyric acid induced erythroid differentiation. Transglutaminase (TGase) activity also increased in these treated cells. Glucocortical steroids, i.e., dexamethasone (DEX) and triamcinolone acetonide, when added to the cultured medium, inhibited the DMSO-induced hemoglobin synthesis but not n-butyric acid-induced hemoglobin synthesis. Similarly, these steroids inhibited DMSO-increased TGase activity but not n-butyric acid-increased TGase activity in intact FL cells. Neither the differentiation-inducing agents nor the steroids had any effect on TGase activity when they were directly added to cell lysates. These results support the view that the increase of TGase activity may be related to erythroid differentiation of FL cells and of its possible role of this enzyme in FL cell-induced differentiation.  相似文献   

19.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

20.
The induction of Hb A (alpha 2 beta A2) and Hb C (alpha 2 beta C2) synthesis in three adult sheep has been sequentially analysed, in relation to the reduction of the haematocrit (Ht) and to the changes of erythropoietin (Epo) concentration in plasma. Hb A production is detected in peripheral reticulocytes when the Ht approaches 70% of its initial value in correspondence with the first rise of EPO plasma level, whereas HB C synthesis appears when the Ht is further reduced to about 50%, at an Epo concentration two to three times higher. The assumption that the cell committed to HB C synthesis is close to the erythroid colony-forming unit (CFU-e) progenitor is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号