首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the influence of PUFA in phospholipids (PL) on the functional characteristics of cultured cardiomyocytes (CM) in basal conditions and during free radical (FR) stress provoked either by the xanthine/xanthine oxidase (X/XO) system or by a (9Z, 11E, 13 (S), 15Z)-13-hydroperoxyoctadecatrienoic acid (13-HpOTrE). CM were grown in media containing either n - 3 (eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA) or n - 6 (arachidonic acid, AA). These two groups of CM displayed different PUFA n - 6/n - 3 ratio in PL. However, their basal electromechanical characteristics were similar. The X/XO system drastically altered CM functions, without difference between the two groups of CM. 13-HpOTrE caused a moderate and reversible depression in action potential parameters, which was dependent upon the PL PUFA, since the n - 3-enriched CM exhibited an earlier functional depression but faster recovery. Thus, the peroxidative damage of CM depended on a cross relationship between FR species and the PL PUFA composition.  相似文献   

2.
3.
Preincubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) in Ca2+-free Krebs buffer resulted in a 27% inhibition of synaptosomal gamma-aminobutyric acid (GABA) uptake. Addition of 1.5 mM CaCl2 increased the inhibition with X/XO to 46%, and inhibition was essentially complete when the calcium ionophore A23187 also was included. In other studies, preincubation of purified rat brain mitochondria with the combination of X/XO and 4 microM CaCl2 produced a significant (38%) decrease in state 3 respiration with glutamate/malate as substrate that was not seen with either X/XO or Ca2+ alone. Similar results were obtained using cultured mouse spinal cord neurons in which incubation with X/XO/ADP/FeCl2 and A23187 produced membrane damage as assessed by a 32% reduction of neuronal Na+, K+-ATPase activity. Neither X/XO/ADP/FeCl2 nor A23187 alone caused detectable inhibition. These results demonstrate the synergistic damaging effect of free radicals and Ca2+ on membrane function. In addition, they suggest that free radical-induced peroxidation of membrane lipid, occurring focally during complete or nearly complete ischemia in vivo, could result in intense cellular perturbation when coupled with increased intracellular Ca2+.  相似文献   

4.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

5.
本研究将爪蟾卵母细胞暴露于黄嘌呤氧化酶-次黄嘌呤(XO-HPX)反应系统,观察自由基对细胞膜及其乙酰胆碱(Ach)受体的损伤,结果表明,在自由基的作用下膜被动电学参数发生显著变化,其效果与XO-HPX的浓度和作用时间成正比,XO-HPX作用2h不影响膜功能,大于4h各项膜功能指标明显下降,Ach极化反应减弱,上升时间延长,去极化幅度下降,下降1/2时间缩短;超氧化物歧化酶(SOD)可消除自由基对上述膜参数的影响。枸杞多糖可以使损伤膜的被动电学参数改善,但对Ach去极化反应无恢复作用。结果提示,XO-HPX反应系统是通过产生超氧阴离子自由基造成细胞膜和Ach受体的损伤,枸杞多糖可对抗自由基对质膜的作用,但对M样受体无效。  相似文献   

6.
Repair of DNA lesions induced by oxygen radicals, generated by xanthine/xanthine oxidase (X/XO), was studied in human peripheral blood lymphocytes and in PHA-stimulated proliferating lymphocytes from 4 healthy subjects. The lesions included DNA-strand breaks (SSB) and other lesions that are converted to SSB under alkaline conditions. The frequencies of SSB were estimated by fluorometric analysis of DNA unwinding. Maximum production of SSB occurred within 10 min of incubation with X/XO at 22 degrees C; with 0.5 mM or higher concentrations of xanthine; and with 0.1-0.5 units/ml of xanthine oxidase. Proliferating lymphocytes repaired X/XO-induced SSB about 4 times more rapidly than lymphocytes. Lymphocytes repaired X/XO-induced SSB more slowly than SSB caused by gamma-radiation. These findings are consistent with the evidence that a number of DNA-repair enzymes have greater activity in proliferating cells than in resting cells. These findings also support the view that there are differences between the DNA damage due to oxygen radicals and that due to ionizing radiation.  相似文献   

7.
Incubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) resulted in an inhibition of gamma-aminobutyric acid (GABA) uptake. The inhibitory effects of X/XO were temperature- and time-dependent, and were characterized by an increased Km for GABA and a decreased Vmax. Inhibition of GABA uptake by X/XO was associated with both the formation of malonyldialdehyde (MDA) and conjugated dienes, indicating that lipid peroxidation was involved. Studies with catalase, superoxide dismutase (SOD), mannitol, and chelated iron suggested that hydroxyl radical (OH X) was probably responsible for the initiation of lipid peroxidation. Both the peroxidation of synaptosomal membranes and the inhibition of GABA uptake by X/XO were enhanced by the addition of ADP and FeCl2. The X/XO-induced inhibition of GABA uptake by synaptosomes could be prevented by preincubation of synaptosomes with certain glucocorticoids prior to X/XO exposure. Methylprednisolone sodium succinate (MPSS), dexamethasone sodium phosphate (DMSP), and prednisolone sodium succinate (PSS) all prevented the inhibition of GABA uptake by X/XO. MPSS was most effective at concentrations around 100 microM, DMSP was slightly more potent, and PSS was optimal at around 300 microM. On the other hand, hydrocortisone sodium succinate (HCSS) was ineffective at preventing X/XO-induced inhibition of GABA uptake at concentrations up to 3 mM. The steroids are presumed to work through a mechanism that blocked the formation of lipid peroxides, as MPSS inhibited the formation of conjugated dienes in synaptosomes exposed to X/XO at a concentration that also protected GABA uptake.  相似文献   

8.
Reactive oxygen species (ROS) have been implicated in the regulation of matrix metalloproteinases (MMPs). The xanthine/xanthine oxidase (X/XO) reaction has been widely used as a source of exogenous ROS in studying MMPs, but commercial XO has also been known to be contaminated by proteolytic activity, and MMPs are protease sensitive substrate. We have investigated the activation of proMMP-2 by X/XO in cultured vascular smooth muscle cells (SMCs). SMCs were incubated with X/XO (unpurified or purified) or XO alone for 24h. X/XO activated proMMP-2 in a dose-dependent manner. A similar profile was observed using XO. Purified XO produced lower amounts of active MMP-2 compared to unpurified XO. EPR study showed that X/XO, not XO itself, produced superoxide anion, which was completely scavenged by SOD. However, X/XO-induced proMMP-2 activation could not be inhibited by combination of SOD and catalase. Incubation with XO either in cell-free conditioned media or in cells resulted in similar amounts of active MMP-2, suggesting that membrane-type-MMPs were not involved in proMMP-2 activation. This was further confirmed by the lack of inhibitory effect of hydroxamate MMP inhibitor, BB1101. Aprotinin blocked unpurified XO-induced proMMP-2 activation in a dose-dependent manner, demonstrating the proteolytic activity contained in XO is essential. We conclude that proteolytic activity contained in XO, rather the ROS derived from X/XO, is responsible for proMMP-2 activation in cultured SMCs. The results also suggest that caution needs to be taken when interpreting the reported results on activation of MMPs where X/XO had been used as an "authentic" source of superoxide anion.  相似文献   

9.
The goal of this study was to determine the effects of peroxynitrite (ONOO-) on smooth muscle membrane potential and vasomotor function in rabbit carotid arteries. ONOO- is known to affect vascular tone by several mechanisms, including effects on K+ channels. Xanthine (X, 0.1 mM), xanthine oxidase (XO, 0.01 U/ml), and a low concentration of sodium nitroprusside (SNP, 10 nM) were used to generate ONOO-. In the common carotid artery, X and XO (X/XO) in the presence of SNP tended to increase tension. In contrast, in the internal carotid artery, X/XO in the presence of SNP transiently hyperpolarized the membrane (-8.5 +/- 1.8 mV, mean +/- SE) and decreased tension (by 85 +/- 5.6%). In internal carotid arteries, in the absence of SNP, X/XO did not hyperpolarize the membrane and produced much less relaxation (by 23 +/- 5.6%) than X/XO and SNP. Ebselen (50 microM) inhibited both hyperpolarization and relaxation to X/XO and SNP, and uric acid (100 microM) inhibited relaxation. Glibenclamide (1 microM) abolished hyperpolarization and inhibited relaxation during X/XO and SNP. Charybdotoxin (100 nM) or tetraethylammonium (1 mM) did not affect hyperpolarization or relaxation, respectively. These results suggest that ONOO- hyperpolarizes and relaxes smooth muscle in rabbit internal carotid artery but not in common carotid artery through activation of K(ATP) channels.  相似文献   

10.
Experimental hemoglobin-based O2 carriers e.g. cross-linked alphaalpha-hemoglobin (alphaalpha-Hb), are under investigation as potential blood substitutes. However, some Hb-based products form strong oxidant species in vivo that may cause adverse clinical effects. We report the prototype of a new class of modified Hb-based O2 carrier, polynitroxylated alphaalpha-Hb (PNH), which has antioxidant activities that may reduce inflammatory effects mediated by oxidant formation. We compared the effects of alphaalpha-Hb and PNH on xanthine oxidase and H2O2-induced neutrophil-endothelial adhesion in vitro. Both peroxide (>0.1 mM), and superoxide/peroxide generated by xanthine oxidase (XO) (> 10 mU/ml) + 0.1 mM xanthine (X), increased endothelial-neutrophil adhesion. At 30 microM, alphaalpha-Hb significantly increased X/XO-mediated adhesion, while PNH inhibited peroxide or X/XO induced adhesion, with maximal inhibition at 10 microM PNH. These data indicate that PNH has antioxidant-anti-inflammatory properties that suggest its use as a potentially safer blood substitute in reperfusion injury, stroke, myocardial infarction and other forms of inflammation.  相似文献   

11.
Free radical scavenging efficiency of Nano-Se in vitro   总被引:6,自引:0,他引:6  
In this study, we showed that smaller size particles of Nano-Se have better scavenging effects on the following free radicals: carbon-centered free radicals (R*) generated from 2,2'-azo-bis-(2-amidinopropane) hydrochloride (AAPH), the relatively stable free radical 1,1-diphenyl-2-picryhydrazyl (DPPH), the superoxide anion (O2*-) generated from the xanthine/xanthine oxidase (X/XO) system, singlet oxygen (1O2) generated by irradiated hemoporphyrin. Furthermore, the three sizes of Nano-Se studied also show protective effects against the oxidation of DNA. The three samples all have potential size-dependent characteristics on scavenging the free radicals. Although in this study we regarded Nano-Se as a whole without considering interactions between BSA and the red selenium nano-particles, there is the possibility that the apparent free radical scavenging effects may be partially contributed by such interactions.  相似文献   

12.
氧自由基在应激性胃溃疡中的发病学意义   总被引:25,自引:1,他引:24  
李铁  张席锦 《生理学报》1993,45(3):286-291
本工作研究了氧自由基在大鼠冷冻束缚应激性胃溃疡中的发病学意义。实验结果如下:(1)以超氧自由基清除剂超氧化物歧化酶(SOD)或羟自由基清除剂二甲亚砜和甘露醇预先处理大鼠,均可显著地减轻胃粘膜损伤;(2)应激时,胃粘膜内的脂质过氧化分解产物丙二醛的含量显著升高;(3)组织化学的研究显示,胃粘膜层含有丰富的黄嘌呤氧化酶,其活性在应激时明显升高,预先用别嘌呤醇处理大鼠以抑制黄嘌呤氧化酶的活性,可使胃粘膜损伤显著减轻。上述结果提示,氧自由基是应激性胃溃疡的重要致病因子,而黄嘌呤氧化酶活性的升高似可能为应激时氧自由基生成增加的重要原因。  相似文献   

13.
The protective effects of catechin 7-O-β-D glucopyranoside (C7G) against streptozotocin (STZ)-induced mitochondrial damage in rat pancreatic β-cells (RINm5F) were investigated. A marked increase in mitochondrial reactive oxygen species (ROS) was observed in STZ-treated cells; this increase was restricted by C7G treatment. C7G also scavenged superoxide anions and hydroxyl radicals generated by xanthine/xanthine oxidase (xanthine/XO) and the Fenton reaction (FeSO(4) + H(2) O(2)), respectively. C7G restored activity and expression of both mitochondrial manganese superoxide dismutase (MnSOD) and catalase (CAT), which were suppressed by STZ treatment. In addition, C7G prevented STZ-induced mitochondrial lipid peroxidation, protein carbonyl, and DNA base modification. C7G restored the loss of mitochondrial membrane potential (Δψ) that was disrupted by STZ treatment, and prevented cell death via inhibition of apoptosis. These results suggest that C7G has a protective effect against STZ-induced cell damage by its antioxidant effects and the attenuation of mitochondrial dysfunction.  相似文献   

14.
Lithospermic acid (LSA) was originally isolated from the roots of Salvia mitiorrhiza, a common herb of oriental medicine. Previous studies demonstrated that LSA has antioxidant effects. In this study, we investigated the in vitro xanthine oxidase (XO) inhibitory activity, and in vivo hypouricemic and anti-inflammatory effects of rats. XO activity was detected by measuring the formation of uric acid or superoxide radicals in the xanthine/xanthine oxidase system. The results showed that LSA inhibited the formation of uric acid and superoxide radicals significantly with an IC50 5.2 and 1.08 microg/ml, respectively, and exhibited competitive inhibition. It was also found that LSA scavenged superoxide radicals directly in the system beta-NADH/PMS and inhibited the production of superoxide in human neutrophils stimulated by PMA and fMLP. LSA was also found to have hypouricemic activity on oxonate-pretreated rats in vivo and have anti-inflammatory effects in a model of gouty arthritis. These results suggested that LSA is a competitive inhibitor of XO, able to directly scavenge superoxide and inhibit superoxide production in vitro, and presents hypouricemic and anti-inflammatory actions in vivo.  相似文献   

15.
In view of the potential role of free radicals in the genesis of cardiac abnormalities under different pathophysiological conditions and the importance of contractile proteins in determining heart function, this study was undertaken to examine the effects of oxygen free radicals on the rat heart myofibrils. Xanthine plus xanthine oxidase (X + XO) which is known to generate superoxide anions (O2-) and hydrogen peroxide (H2O2), an activated species of oxygen, was found to decrease Ca(2+)-stimulated ATPase activity, increase Mg(2+)-ATPase activity and reduce sulfhydryl (SH) group contents in myofibrils; these effects were completely prevented by superoxide dismutase (SOD) plus catalase (CAT). Both H2O2 and hypochlorous acid (HOCl), an oxidant, produced actions on cardiac myofibrils similar to those observed by X + XO. The effects of H2O2 and HOCl were prevented by CAT and L-methionine, respectively. N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), inhibitors of SH groups, also produced effects similar to those seen with X + XO. Dithiothreitol (DTT), a well known sulfhydryl-reducing agent, prevented the actions of X + XO, H2O2, HOCl, NEM and DTNB. These results suggest that marked changes in myofibrillar ATPase activities by different species of oxygen free radicals may be mediated by the oxidation of SH groups.  相似文献   

16.
The xanthine oxidoreductase (XOD) system, which consists of xanthine dehydrogenase (XDH) and xanthine oxidase (XO), is one of the major sources of free radicals in biological systems. The XOD system is present predominantly in the normal tissues as XDH. In damaged tissues, XDH is converted into XO, the form that generates free radicals. Therefore, the XO form of the XOD system is expected to be found mainly in radiolytically damaged tissue. In this case, XO may catalyze the generation of free radicals and potentiate the effect of radiation. Inhibition of the XOD system is likely to attenuate the detrimental effects of ionizing radiation. We have examined this possibility using allopurinol and folic acid, which are known inhibitors of the XOD system. Swiss albino mice (7-8 weeks old) were given single doses of allopurinol and folic acid (12.5-50 mg/kg) intraperitoneally and irradiated with different doses of gamma radiation at a dose rate of 0.023 Gy/s. The XO and XDH activities as well as peroxidative damage and lactate dehydrogenase (LDH) were determined in the liver. An enhancement of the activity of XO and a simultaneous decrease in the activity of XDH were observed at doses above 3 Gy. The decrease in the ratio XDH/XO and the unchanged total activity (XDH + XO) suggested the conversion of XDH into XO. The enhanced activity of XO may potentiate radiation damage. The increased levels of peroxidative damage and the specific activity of LDH in the livers of irradiated mice supported this possibility. Allopurinol and folic acid inhibited the activities of XDH and XO, decreased their ratio (XDH/XO), and lowered the levels of peroxidative damage and the specific activity of LDH. These results suggested that allopurinol and folic acid have the ability to inhibit the radiation-induced changes in the activities of XDH and XO and to attenuate the detrimental effect of this conversion, as is evident from the diminished levels of peroxidative damage and the decreased activity of LDH.  相似文献   

17.
采用pronase—EDTA法分离大鼠胃粘膜细胞,将黄嘌呤氧化酶(xanthineoxidase,XO)—黄嘌呤(xanthine,X)氧自由基生成系统加入培养液诱发细胞的损伤。观察到预先加入生长抑素可以剂量依赖性地减轻XO—X引起的细胞死亡和乳酸脱氢酶的漏出;同时抑制XO—X引起的细胞脂质过氧化水平的升高,并翻转细胞膜流动性及溶血性卵磷脂与卵磷脂比值的变化。上述结果提示,生长抑素对氧自由基引起的胃粘膜细胞损伤可能具有直接的保护作用,其机制似与防止质膜的脂质过氧化并从而保护细胞膜免受损伤有关。  相似文献   

18.
A new xanthine (X) biosensors based on a hybrid nanocomposite containing multi-walled carbon nanotubes (MWCNT), Pt nanoparticles (PtNP) and gold nanoparticle (AuNP) was presented. X biosensor was fabricated by dropping AuNP/PtNP/MWCNT onto xanthine oxidase (XO) modified glassy carbon paste electrode (GCPE). Resulted XO/AuNP/PtNP/MWCNT/GCPE biosensor showed two linearity between 2.0 and 50 µM and 0.25 and 6.0 mM for X. RSD value was calculated as 2.46 (n = 5). Finally, the biosensor was applied to the X detection in synthetic serum samples and good recovery value was obtained.  相似文献   

19.
Local inflammation and respiratory burst of polymorphonuclear leukocytes generate reactive oxygen species (ROS). The aim of our study was to analyze the effects of peritoneal neutrophils on changes of the muscle tension of isolated aorta and compare their effects with those of different ROS. While native neutrophils did not influence muscle tension, the N-formyl-methionyl-leucyl-phenylalanine activated ones evoked a biphasic response on the KCl-precontracted aorta. The effects of activated neutrophils were in both respects similar to those evoked by xanthine/xanthine oxidase (X/XO) and differed from the effects evoked by H(2)O(2) and Fe(2)SO(4)/H(2)O(2). Using H(2)O(2) we demonstrated that the effects of ROS were dependent on the KCl induced initial tension. To exclude the effect of extensive depolarization the action of different ROS was studied also on tissues precontracted by phenylephrine. Under such condition activated neutrophils caused a marked contraction similar to that evoked by X/XO. Their effects differed however, from those of H(2)O(2) and Fe(2)SO(4)/ascorbic acid. These findings and elimination of activated neutrophil-induced contractions as well as the chemiluminiscence by superoxide dismutase suggest that the primarily activated neutrophil-released ROS was superoxide, which can be transformed to peroxynitrite, and other ROS including H(2)O(2). Reduction of all followed-up contractions caused by nordihydroguaiaretic acid, indicate that 5-lipoxygenase metabolites unselectively reduce contractions. In contrast, selective inhibition of activated neutrophil-evoked contraction by indomethacin suggests that cyclooxygenase metabolites are involved mainly in their action on vascular smooth muscle.  相似文献   

20.
The effects of active oxygen species on the in vivo activity of recombinant human erythropoietin (EPO) treated by Fenton system, xanthine (X) plus xanthine oxidase (XO) system and hydrogen peroxide (H2O2) has been studied by means of counting the increase in number of hemolyser-resistant cells (HRCs) in EPO-injected mice. The results showed that both Fenton and X plus XO systems caused a significant reduction of the activity in proportion to the concentration of generated active oxygen species. Meanwhile, the treatment of EPO with H2O2 alone resulted in a relatively slight reduction of the activity. Electrophoretic studies on the structure of EPO revealed that its main protein band on sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) disappeared in proportion with the extent of exposure to active oxygen generating systems. Both Fenton and X plus XO systems caused a significant loss of fluorescence in the pyridylamino (PA-) sugar chain in proportion to the concentration of generated active oxygen species, and no degradation products in the sugar chain part of the PA-sugar chain were detected. This showed that aromatic groups in EPO were sensitive to attack by active oxygen species. These results provide evidence that hydroxyl radical and other active oxygen species have a potential to react with EPO, leading to a reduction of its in vivo activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号