首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously observed the apparent displacement of microfilaments over microtubules in the backbone structure of permeabilized flagellates of Physarum polycephalum upon addition of ATP (Uyeda, T. Q. P., and M. Furuya. 1987. Protoplasma. 140:190-192). We now report that disrupting the microtubular cytoskeleton by treatment with 0.2 mM Ca2+ for 3-30 s inhibits the movement of the microfilaments induced by subsequent treatment with 1 mM Mg-ATP and 10 mM EGTA. Stabilization of microtubules by pretreatment with 50 microM taxol retarded both the disintegrative effect of Ca2+ on the microtubules and the inhibitory effect of Ca2+ on the subsequent, ATP-induced movement of the microfilaments. These results suggest that the movement of the microfilaments depends on the integrity of the microtubular cytoskeleton. EM observation showed that the backbone structure in control permeabilized flagellates consists of two arrays of microtubules closely aligned with bundles of microfilaments of uniform polarity. The microtubular arrays after ATP treatment were no longer associated with microfilaments, yet their alignment was not affected by the ATP treatment. These results imply that the ATP treatment induces reciprocal sliding between the microfilaments and the microtubules, rather than between the microfilaments themselves or between the microtubules themselves. While sliding was best stimulated by ATP, the movement was partially induced by GTP or ATP gamma S, but not by ADP or adenylyl-imidodiphosphate (AMP-PNP). AMP-PNP added in excess to ATP, 50 microM vanadate, or 2 mM erythro-9-[3-(2-hydroxynonyl)]adenine (EHNA) inhibited the sliding. Thus, the pharmacological characteristics of this motility were partly similar to, although not the same as, those of the known microtubule-dependent motilities.  相似文献   

2.
Franz Grolig 《Planta》1997,204(1):54-63
The contribution of microtubules and microfilaments to the cytomechanics of transverse nuclear centering were investigated in the charophycean green alga Spirogyracrassa (Zygnematales). Cytoplasmic strands of enhanced rigidity and fasciate appearance radiate from the rim of the lenticular nucleus through the vacuole, frequently split once or twice and are attached to the helical chloroplast bands in the peripheral cytoplasm. The nucleus is encased in tubulin and a web of F-actin. Bundles of microtubules, emerging from the nuclear rim, are organized into dividing fascicles within the strands and reach to the inner surface of the chloroplast envelope. Organelles are translocated in both directions along similarly arranged fascicles of microfilament bundles which extend from the nucleus to the peripheral actin cytoskeleton. Application of microtubule- and/or microfilament-depolymerizing drugs affected the position of the nucleus only slowly, but in distinct ways. The differential effects suggest that nuclear centering depends on the tensional integrity of the perinuclear scaffold, with microfilaments conveying tension along stabilized microtubules and the actin cytoskeleton integrating the translocation forces generated within the scaffold. Received: 9 December 1996 / Accepted: 29 April 1997  相似文献   

3.
Using the squid giant axon, we analyzed biochemically the molecular organization of the axonal cytoskeleton underlying the axolemma (subaxolemmal cytoskeleton). The preparation enriched in the subaxolemmal cytoskeleton was obtained by squeezing out the central part of the axoplasm using a roller. The electrophoretic banding pattern of the subaxolemmal cytoskeleton was characterized by large amounts of two high-molecular-weight (HMW) proteins (260 and 255 kD). The alpha, beta-tubulin, actin, and some other proteins were also its major constituents. The 260-kD protein is known to play an important role in maintaining the excitability of the axolemma (Matsumoto, G., M. Ichikawa, A. Tasaki, H. Murofushi, and H. Sakai, 1983, J. Membr. Biol., 77:77-91) and was recently designated "axolinin" (Sakai, H., G. Matsumoto, and H. Murofushi, 1985, Adv. Biophys., 19:43-89). We purified axolinin and the 255-kD protein in their native forms and further characterized their biochemical properties. The purified axolinin was soluble in 0.6 M NaCl solution but insoluble in 0.1 M NaCl solution. It co-sedimented with microtubules but not with actin filaments. In low-angle rotary-shadowing electron microscopy, the axolinin molecule in 0.6 M NaCl solution looked like a straight rod approximately 105 nm in length with a globular head at one end. On the other hand, the purified 255-kD protein was soluble in both 0.1 and 0.6 M NaCl solution and co-sedimented with actin filaments but not with microtubules. The 255-kD protein molecule appeared as a characteristic horseshoe-shaped structure approximately 35 nm in diameter. Furthermore, the 255-kD protein showed no cross-reactivity to the anti-axolinin antibody. Taken together, these characteristics lead us to conclude that the subaxolemmal cytoskeleton in the squid giant axon is highly specialized, and is mainly composed of microtubules and a microtubule-associated HMW protein (axolinin), and actin filaments and an actin filament-associated HMW protein (255-kD protein).  相似文献   

4.
It has been thought that motile structures within the cell are driven toward the plus and minus ends of microtubules by the ATPases, kinesin and dynein, respectively. Recently obtained data indicate that this model is far too simplistic. Kinesin is now understood to be one representative of a family of proteins. Another member of the kinesin family has been found to generate force toward the microtubule minus end. Evidence for either a bidirectional dynein, or closely related retrograde and anterograde forms of dynein has also received potent new support. The discovery of a third potential microtubule motor, the GTPase, 'dynamin', complicates matters further.  相似文献   

5.
The early network of axons in the embryonic brain provides connectivity between functionally distinct regions of the nervous system. While many of the molecular interactions driving commissural pathway formation have been deciphered, the mechanisms underlying the development of longitudinal tracts remain unclear. We have identified here a role for the Roundabout (Robo) family of axon guidance receptors in the positioning of longitudinally projecting axons along the dorsoventral axis in the embryonic zebrafish forebrain. Using a loss-of-function approach, we established that Robo family members exhibit complementary functions in the tract of the postoptic commissure (TPOC), the major longitudinal tract in the forebrain. Robo2 acted initially to split the TPOC into discrete fascicles upon entering a broad domain of Slit1a expression in the ventrocaudal diencephalon. In contrast, Robo1 and Robo3 restricted the extent of defasciculation of the TPOC. In this way, the complementary roles of Robo family members balance levels of fasciculation and defasciculation along this trajectory. These results demonstrate a key role for Robo-Slit signaling in vertebrate longitudinal axon guidance and highlight the importance of context-specific guidance cues during navigation within complex pathways.  相似文献   

6.
We investigated the roles of microfilaments and microtubules in the localization and tyrosine phosphorylation of paxillin, a focal adhesion-associated signaling molecule, in bovine aortic endothelial cells (BAECs). Paxillin tyrosine phosphorylation is inhibited by cytochalasin D (CD), but slightly increased by colchicine and paclitaxol (taxol). CD also caused an overall disassembly of paxillin-containing focal adhesions (paxillin-FAs) and translocation of paxillin to the cytoplasm and perinuclear region with a diffuse distribution. Meanwhile, colchicine and taxol caused a disassembly of paxillin-FAs from cell periphery and lamellipodia, and their assembly in cell center. These results indicate that actin filaments are important in paxillin assembly in the FAs of the whole ECs and that microtubules are critical in paxillin assembly in cell periphery and lamellipodia; thus the microfilaments and microtubules play differential roles in the dynamics of paxillin assembly/disassembly. Our findings also suggest that tyrosine phosphorylation is an important element in paxillin dynamics at FAs.  相似文献   

7.
8.
Using immunofluorescence techniques, we have examined the microtubules and microfilaments in colonies of terminally differentiating human keratinocytes in tissue culture. The undifferentiated keratinocytes contained numerous microtubules, which radiated from a centrosomal organization center (MTOC). Differentiating keratinocytes, which leave the basal layer and begin to synthesize involucrin, displayed an altered cytoskeleton. Thick mats and coils of microtubules formed throughout the cytoplasm of the differentiated squames, and microfilaments were no longer visible after staining with phalloidin. Instead, only scattered stipples of phalloidin-stained material were observed. The results suggest that the terminal differentiation of epidermal cells involves a reorganization not only of the keratin filaments but of the entire cytoskeleton.  相似文献   

9.
To obtain an overall three-dimensional picture of the interaction between microtubules and the motor proteins of the kinesin family it will be necessary to take account of both atomic resolution structures obtained by X-ray crystallography and medium resolution reconstructions obtained by electron cryomicroscopy. We examine the problems associated with obtaining the required structural information from electron micrographs of vitreous ice-embedded microtubules decorated with motor domains. We find that the minus-end directed motor, ncd, decorates microtubules with an 80 Å periodicity as for kinesin. Our theoretical analysis and experiments with ncd illustrate the difficulty in determining unambiguously the surface lattice organization by diffraction analysis of micrographs. 3D reconstructions of decorated microtubules are required to accurately locate the motor domains. Helical diffraction theory is not usually applicable because microtubules are cylindrical structures that rarely have complete helical symmetry. We propose using a back-projection method based on the long pitch helices formed by individual protofilaments. Model reconstructions show that this approach is feasible. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Branching morphology is a hallmark feature of axons and dendrites and is essential for neuronal connectivity. To understand how this develops, I analyzed the stereotyped pattern of Drosophila mushroom body (MB) neurons, which have single axons branches that extend dorsally and medially. I found that components of the Wnt/Planar Cell Polarity (PCP) pathway control MB axon branching. frizzled mutant animals showed a predominant loss of dorsal branch extension, whereas strabismus (also known as Van Gogh) mutants preferentially lost medial branches. Further results suggest that Frizzled and Strabismus act independently. Nonetheless, branching fates are determined by complex Wnt/PCP interactions, including interactions with Dishevelled and Prickle that function in a context-dependent manner. Branching decisions are MB-autonomous but non-cell-autonomous as mutant and non-mutant neurons regulate these decisions collectively. I found that Wnt/PCP components do not need to be asymmetrically localized to distinct branches to execute branching functions. However, Prickle axonal localization depends on Frizzled and Strabismus.  相似文献   

11.
The role of microtubules and microfilaments in neurulation in Xenopus   总被引:10,自引:0,他引:10  
  相似文献   

12.
Digestion of assembled microtubules with agarose-bound trypsin was performed to obtain microtubules which lack the extending projections, the non-tubulin-binding part of the high-molecular-weight microtubule-associated proteins. The assembly kinetics and the minimum protein concentration for assembly were the same for these trypsinated microtubules as for normal, untreated microtubules. Furthermore, the digested microtubules gave rise to the same change in turbidity per polymer mass as that found for normal microtubules. However, electron microscopy of pelleted microtubules revealed a closer packing after trypsin treatment. A substantially lower increase in specific viscosity was found upon assembly. At concentrations of above approx. 1.5 mg/ml, the viscosity of trypsin-treated microtubules was almost independent of the protein concentration, in contrast to the turbidity, which still increased. Both microtubules and the trypsin-digested microtubules were easily oriented by shear, although the flow linear dichroism signal for the microtubules after trypsin treatment was only half of that found for perfectly oriented normal microtubules. At higher shear force gradients, digested microtubules aggregated side by side as shown by electron microscopy. This was not found for normal microtubules. Even although the extending parts of the high-molecular-weight proteins are not needed for assembly, they were found to play an important role in microtubule orientation and interactions between microtubules, probably by acting as spacers between microtubules.  相似文献   

13.
T. Noguchi  K. Ueda 《Protoplasma》1988,143(2-3):188-192
Summary Cortical microtubules and cortical microfilaments were visualized in cells ofMicrasterias pinnatifida treated by freeze-substitution, and the pattern of their distribution was reconstructed from serial sections. Most cortical microtubules accompanied the long microfilaments that ran parallel to the microtubules. Cortical microfilaments not accompanied by the microtubules were also found. They were short and slightly curved. Both types of cortical microfilament were not grouped into bundles, and were 6–7 nm in diameter, a value that corresponds to the diameter of filaments of F-actin.  相似文献   

14.
Axo-glial interactions regulate the localization of axonal paranodal proteins   总被引:10,自引:0,他引:10  
The SR proteins, a group of abundant arginine/serine (RS)-rich proteins, are essential pre-mRNA splicing factors that are localized in the nucleus. The RS domain of these proteins serves as a nuclear localization signal. We found that RS domain-bearing proteins do not utilize any of the known nuclear import receptors and identified a novel nuclear import receptor specific for SR proteins. The SR protein import receptor, termed transportin-SR (TRN-SR), binds specifically and directly to the RS domains of ASF/SF2 and SC35 as well as several other SR proteins. The nuclear transport regulator RanGTP abolishes this interaction. Recombinant TRN-SR mediates nuclear import of RS domain- bearing proteins in vitro. TRN-SR has amino acid sequence similarity to several members of the importin beta/transportin family. These findings strongly suggest that TRN-SR is a nuclear import receptor for the SR protein family.  相似文献   

15.
The RGSZ2 gene, a regulator of G protein signaling, has been implicated in cognition, Alzheimer's disease, panic disorder, schizophrenia and several human cancers. This 210 amino acid protein is a GTPase accelerating protein (GAP) on Gαi/o/z subunits, binds to the N terminal of neural nitric oxide synthase (nNOS) negatively regulating the production of nitric oxide, and binds to the histidine triad nucleotide-binding protein 1 at the C terminus of different G protein-coupled receptors (GPCRs). We now describe a novel regulatory mechanism of RGS GAP function through the covalent incorporation of Small Ubiquitin-like MOdifiers (SUMO) into RGSZ2 RGS box (RH) and the SUMO non covalent binding with SUMO-interacting motifs (SIM): one upstream of the RH and a second within this region. The covalent attachment of SUMO does not affect RGSZ2 binding to GPCR-activated GαGTP subunits but abolishes its GAP activity. By contrast, non-covalent binding of SUMO with RH SIM impedes RGSZ2 from interacting with GαGTP subunits. Binding of SUMO to the RGSZ2 SIM that lies outside the RH does not affect GαGTP binding or GAP activity, but it could lead to regulatory interactions with sumoylated proteins. Thus, sumoylation and SUMO-SIM interactions constitute a new regulatory mechanism of RGS GAP function and therefore of GPCR cell signaling as well.  相似文献   

16.
17.
Summary A unique spindle apparatus develops during mitosis in the micronucleus ofParamecium bursaria. During interphase the micronucleus contains short microtubule profiles and clumps of condensed chromatin. Throughout mitosis the nuclear envelope remains intact. During prophase, cup-shaped structures termed microlamellae develop in close association with regions of condensed chromatin. Each micromella consists of an outer sublamella, an inner sublamellae, and ring-shaped structures termed microsepta that join the two sublamellae. Microtubules elongate parallel to the division axis. During metaphase, the microlamellae appear to act as kinetochorelike structures that aid in the alignment of the chromosomes. The microlamellae appear conical and join to a meshwork of microfilaments at their apices. Further toward the polar regions the microfilaments join with microtubules that converge and terminate near the nuclear envelope. During metaphase-anaphase and anaphase the chromosomes are apparently moved by the microfilaments pulling on the kinetochorelike microlamellae. Also during metaphase-anaphase, extranuclear microtubules join the nuclear envelope of the micronucleus to microtubule elements of the cell cortex. By anaphasetelophase, microlamellae and the microfilament meshwork degenerate and microtubules represent the only spindle elements. The evidence of this report supports the hypothesis that microfilaments can participate with microtubules in the movement of chromosomes.This report is part of a Ph.D. Thesis presented by the senior author at Fordham University.  相似文献   

18.
To test the effects of colchicine and cytochalasin B on the ADH-induced response, unidirectional and net water fluxes were measured at one or two minutes intervals in frog urinary bladder. The action of these agents on the appearance of intramembrane particles aggregates in the luminal membrane of target cells under oxytocin stimulation and the changes in the tissue ultrastructure induced by cytochalasin B were also studied. It was observed that: the time-course of the response to oxytocin was strongly slowed by colchicine while the washout was not affected; the time-course of the 'on and off' of the response to oxytocin was not modified by cytochalasin B; cytochalasin B pretreatment proportionally reduced unidirectional and net water fluxes measured after glutaraldehyde fixation; the combined action of colchicine and cytochalasin B proportionally reduced the net water flux and the number of intramembrane particles aggregates, observed in freeze-fracture studies; after cytochalasin B action the dilation of intercellular spaces classically observed under oxytocin stimulation is strongly reduced. It is concluded that: microtubules probably play an important role in the water channels plug-in, but not in their removal; microfilaments integrity is necessary for the mechanisms inducing intercellular space dilation and the observed results confirm that water permeability is controlled by the number of permeation units present in the luminal border of granular cells and probably represented by the intramembrane particle aggregates.  相似文献   

19.
Coordination of F-actin and microtubule dynamics is important for cellular motility and morphogenesis, but little is known about underlying mechanisms. short stop (shot) encodes an evolutionarily conserved, neuronally expressed family of rod-like proteins required for sensory and motor axon extension in Drosophila melanogaster. We identify Shot isoforms that contain N-terminal F-actin and C-terminal microtubule-binding domains, and that crosslink F-actin and microtubules in cultured cells. The F-actin- and microtubule-binding domains of Shot are required in the same molecule for axon extension, though the length of the connecting rod domain can be dramatically reduced without affecting activity. Shot therefore functions as a cytoskeletal crosslinker in axon extension, rather than mediating independent interactions with F-actin and microtubules. A Ca(2+)-binding motif located adjacent to the microtubule-binding domain is also required for axon extension, suggesting that intracellular Ca(2+) release may regulate Shot activity. These results suggest that Shot coordinates regulated interactions between F-actin and microtubules that are crucial for neuronal morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号