首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
The roles of the intracellular calcium pool involved in regulating the Ca2+ profile and the neuronal survival rate during development were studied by using thapsigargin (TG), a specific inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase in cultured cerebellar granule neurons. Measuring the neuronal [Ca2+]i directly in the culture medium, we found a bell-shaped curve for [Ca2+]i versus cultured days in cerebellar granule neurons maintained in medium containing serum and 25 mM K+. The progressive increase in [Ca2+]i of the immature granule neurons (1-4 days in vitro) was abolished by TG, which resulted in massive neuronal apoptosis. When the [K+] was lowered from 25 to 5 mM, neither the progressively increasing [Ca2+]i nor the survival of immature granule neurons was significantly changed over 24-h incubation. Similarly, TG caused a dramatic decrease in the [Ca2+]i and survival rate of these immature neurons when switched to 5 mM K+ medium. Following maturation, the granule neurons became less sensitive to TG for both [Ca2+]i and neuronal survival. However, TG can protect mature granule neurons from the detrimental effect of switching to a 5 mM K+ serum-free medium by decreasing [Ca2+]i to an even lower level than in the respective TG-free group. Based on these findings, we propose that during the immature stage, TG-sensitive ER Ca2+-ATPase plays a pivotal role in the progressive increase of [Ca2+]i, which is essential for the growth and maturation of cultured granule neurons.  相似文献   

2.
3.
Developmental changes in intracellular Ca2+ stores in brain was studied by examining: (1) IP3- and cADPR-induced increase in [Ca2+]i in synaptosomes; (2) Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; (3) TG-induced inhibition of Ca(2+)-ATPase activity and ATP-dependent 45Ca2+ uptake into Ca2+ store in ER microsomes; and (4) gene expression of Ca(2+)-ATPase pump in neurons obtained from brains of the new-born and the 3-week-old rats. IP3 (EC50 310 +/- 8 nM, 200% maximum increase in [Ca2+]i) and cADPR (EC50 25 +/- 3 nM, greater than 170% maximum increase in [Ca2+]i) both were potent agonist of Ca2+ release from internal stores in synaptosomes obtained from the 3-week-old rats. However, IP3 (EC50 250 +/- 10 nM, 175 maximum increase in [Ca2+]i) was a potent, but cADPR (EC50 300 +/- 20 nM, 75% maximum increase) was a poor agonist of Ca2+ release from intracellular stores in synaptosomes obtained from the new-born rats. [3H]IP3, [32P]cADPR and [3H]Ry binding in the new-born samples were significantly less than that in the 3-week-old samples. [3H]Ry binding to its receptor was more sensitive to cADPR in microsomes from the 3-week-old rats than those from the new-born rats. Microsomes from the new-born rats exhibited TG-sensitive (IC50 30 +/- 4 nM) and TG-insensitive forms of Ca(2+)-ATPase, while microsomes from the 3-week-old rats exhibited only the TG-sensitive form of Ca(2+)-ATPase (5 +/- 1 nM IC50). Microsomes from the 3-week-old rats were more sensitive to TG but less sensitive to IP3, while microsomes from the new-born rats were more sensitive to IP3 but less sensitive to TG. The lower TG sensitivity of the new-born Ca2+ store may be because they poorly express a 45 amino acid C-terminal tail of Ca(2+)-ATPase that contains the TG regulatory sites. This site is adequately expressed in the older brain. This suggests that: (1) the new-born brain contains fully operational IP3 pathway but poorly developed cADPR pathway, while the older brain contains both IP3 and cADPR pathways; and (2) a developmental switch occurs in the new-born Ca(2+)-ATPase as a function of maturity.  相似文献   

4.
Platelet free calcium concentrations ([Ca2+]i) were measured with Fura-2 to elucidate the intracellular calcium kinetics in patients with renal disease. There were no significant differences of the resting [Ca2+]i among the control subjects (C) (n = 12), patients with chronic glomerulonephritis (CGN) (n = 8), and patients with chronic renal failure (CRF) (n = 12). In all groups, platelets [Ca2+]i were significantly increased by agonists (thrombin, adenosine diphosphate) compared with their respective basal level. Thrombin-induced [Ca2+]i rise was significantly higher in CRF (840 +/- 265 nM) than in C (600 +/- 163) and CGN (562 +/- 137). Also adenosine diphosphate elicited similar responses. In the presence of calcium chelator in the incubation buffer, the elevation of [Ca2+]i after thrombin stimulation was statistically higher in CRF (469 +/- 85 nM) than in C (275 +/- 60) and CGN (301 +/- 41). These findings suggest that platelets of CRF were capable of increasing [Ca2+]i in response to agonists, through further mobilization of calcium from the intracellular pool rather than the elevation of transmembrane calcium influx.  相似文献   

5.
Oxygen-free radicals are thought to be a major cause of beta-cell dysfunction in diabetic animals induced by alloxan or streptozotocin. We evaluated the effect of H2O2 on cytosolic Ca2+ concentration ([Ca2+]i) and the activity of ATP-sensitive potassium (K+ATP) channels in isolated rat pancreatic beta-cells using microfluorometry and patch clamp techniques. Exposure to 0.1 mM H2O2 in the presence of 2.8 mM glucose increased [Ca2+]i from 114.3+/-15.4 nM to 531.1+/-71.9 nM (n=6) and also increased frequency of K+ATP channel openings. The intensity of NAD(P)H autofluorescence was conversely reduced, suggesting that H2O2 inhibited the cellular metabolism. These three types of cellular parameters were reversed to the control level on washout of H2O2, followed by a transient increase in [Ca2+]i, the transient inhibition of K+ATP channels associated with action currents and increase of the NAD(P)H intensity with an overshoot. In the absence of external Ca2+, 0.1 mM H2O2 increased [Ca2+]i from 88.8+/-7.2 nM to 134.6+/-8.3 nM. Magnitude of [Ca2+]i increase induced by 0.1 mM H2O2 was decreased after treatment of cells with 0.5 mM thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pump (45.8+/-4.9 nM vs 15.0+/-4.8 nM). Small increase in [Ca2+]i in response to an increase of external Ca2+ from zero to 2 mM was further facilitated by 0.1 mM H2O2 (330.5+/-122.7 nM). We concluded that H2O2 not only activates K+ATP channels in association with metabolic inhibition, but also increases partly the Ca2+ permeability of the thapsigargin-sensitive intracellular stores and of the plasma membrane in pancreatic beta-cells.  相似文献   

6.
The effects of the thyroid status on the cytosolic free Ca2+ concentration ([Ca2+]i) in single cardiomyocytes were studied at rest and during contraction. The mean resting [Ca2+]i increased significantly from the hypothyroid (45 +/- 4 nM) through the euthyroid (69 +/- 12 nM) to the hyperthyroid condition (80 +/- 11 nM) at extracellular Ca2+ concentrations ([Ca2+]o) up to 2.5 mM. At [Ca2+]o above 2.5 mM the differences in [Ca2+]i between the groups became less. The amplitude of the Ca2+ transients became higher in all groups with increasing [Ca2+]o (1, 2.5 and 5 mM), and was highest at all [Ca2+]o in hyperthyroid myocytes. The beta-agonist isoprenaline elevated peak [Ca2+]i during contraction and increased the rate of the decay of the Ca2+ transients to a greater extent in hypothyroid myocytes than in hyperthyroid myocytes. Depolarization with high [K+]o induced a large but transient [Ca2+]i overshoot in hypothyroid myocytes, but not in hyperthyroid myocytes, before a new elevated steady-state [Ca2+]i was reached, which was not different between the groups. When isoprenaline was added to K+ o-depolarized myocytes after a steady state was reached, a significantly larger extra increase in [Ca2+]i was measured in the hypothyroid group (28%) compared with the hyperthyroid group (8%). It is concluded that in cardiac tissue exposed to increasing amounts of thyroid hormones (1) [Ca2+]i increases at rest and during contraction in cardiomyocytes and (2) interventions which favour Ca2+ entry into the cytosol [( Ca2+]o elevation, high [K+]o, beta-agonists) tend to have less impact on Ca2+ homoeostasis.  相似文献   

7.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

8.
Regulation of intracellular Mg2+ activity in the heart is not well characterized. Cardiac myocytes were prepared as primary cultures from 7 day old chick embryo hearts and intracellular Mg2+ concentration [( Mg2+]i) was determined in single ventricular cells with mag-fura-2. Basal [Mg2+]i was 0.48 +/- 0.03 mM in normal culture medium. There was no correlation of basal [Mg2+]i with cellular contraction or intracellular [Ca2+]i (determined with fura-2). Cardiocytes cultured (16 hr) in low Mg (0.16 mM) media contained 0.21 +/- 0.05 mM Mg2+ which returned to normal levels when placed in Mg media with a refill time of 20 min. Basal [Ca2+]i (121 +/- 11 nM) and stimulated [Ca2+]i (231 +/- 41 nM) was similar to control cells. Verapamil, 25 microM, reversibly blocked Mg2+ refill. In conclusion, the basal [Mg2+]i of isolated cardiomyocytes is considerably below the Mg2+ electrochemical equilibrium allowing passive Mg2+ influx. The influx pathway for Mg2+ is inhibited by verapamil and appears to be independent of Ca2+ as assessed by fura-2.  相似文献   

9.
Angiotensin II (Ang II) increases intracellular calcium concentration ([Ca2+]i) in both normal and cancerous human breast cells in primary culture. Maximal [Ca2+]i increase is obtained using 100nM Ang II in both cell types; in cancerous breast cells, [Ca2+]i increase (delta[Ca2+]i) is 135+/-10nM, while in normal breast cells it reaches 65+/-5 nM (P<0.0001). In both cell types, Ang II evokes a Ca2+ transient peak mediated by thapsigargin (TG) sensitive stores; neither Ca2+ entry through L-type membrane channels or capacitative Ca2+ entry are involved. Type I Ang II receptor subtype (AT1) mediates Ang II-dependent [Ca2+]i increase, since losartan, an AT1 inhibitor, blunted [Ca2+]i increase induced by Ang II in a dose-dependent manner, while CGP 4221A, an AT2 inhibitor, does not. Phospholipase C (PLC) is involved in this signaling mechanism, as U73122, a PLC inhibitor, decreases Ang II-dependent [Ca2+]i transient peak in a dose-dependent mode.Thus, the present study provides new information about Ca2+ signaling pathways mediated through AT1 in breast cells in which no data were yet available.  相似文献   

10.
Using fluorescent Ca2+ indicator fura-2 and whole-cell patch-clamp techniques, we examined the effect of 2-nicotinamidoethyl nitrate (nicorandil) on the intracellular free Ca2+ concentration ([Ca2+]i) and electrical properties in single guinea pig ventricular myocytes. Nicorandil (10 nM approximately 1 mM) reduced the resting level [Ca2+]i monitored as fura-2 fluorescence ratio in a concentration-dependent manner. Dibutyryl guanosine 3':5'-cyclic monophosphate (cyclic GMP), a membrane permeable cyclic GMP analogue, mimicked the nicorandil action. Neither application of caffeine (10 mM) nor deprivation of extracellular Na+ ions could prevent the nicorandil action on [Ca2+]i. In contrast, the nicorandil effect was virtually blocked by sodium orthovanadate (40 microM), a Ca2+ pumping ATPase inhibitor. During electrophysiological experiments, nicorandil shortened action potential durations (205 +/- 80 ms to 153 +/- 76 ms) by increasing a glibenclamide-sensitive outward K+ conductance. However, the drug produced little hyperpolarization (approximately 2 mV) because the resting potential of ventricular myocytes was close to the K+ equilibrium potential. The involvement of voltage-dependent Ca-channel current and Na-Ca exchanger was considered to be minimal under physiological conditions. It is thus concluded that nicorandil decreases basal [Ca2+]i via cyclic GMP-mediated activation of the plasma membrane Ca2+ pump in guinea pig ventricular myocytes.  相似文献   

11.
The modulation of the intrasynaptosomal concentration of Ca2+, [Ca2+]i, by Na+/Ca2+ exchange was studied using Indo-1 fluorescence. The electrochemical gradient of Na+ was manipulated by substituting Li+ or choline for Na+ in the external medium and, then, the influx of 45Ca2+ and the [Ca2+]i were measured. It was found that the increase in [Ca2+]i induced by K+ depolarization is lower if the value of [Ca2+]i has been previously raised by Na+/Ca2+ exchange, suggesting that Ca2+ entering by Na+/Ca2+ exchange reduces the Ca2+ entering by voltage-dependent calcium channels. Our results show that a value of [Ca2+]i of about 650 nM induced by Na+/Ca2+ exchange reduces by 50% the Ca2+ entering due to K+ depolarization and no Ca2+ enters through the channels if the [Ca2+]i is previously raised above about 800 nM. Furthermore, predepolarization of the synaptosomes in a Ca-free medium also inhibits by at least 40% the [Ca2+]i rise through Ca2+ channels. Thus, the results suggest that both predepolarization and [Ca2+]i rise due to Na+/Ca2+ exchange decrease the Ca2+ entering by voltage-sensitive Ca2+ channels. The Ca2+ entering by Na+/Ca2+ exchange might contribute to the regulation of neurotransmitter release. Our results also show that the presence of Li+ in the external medium decreases the buffering capacity of synaptosomes, probably by releasing Ca2+ from mitochondria by Li+/Ca2+ exchange.  相似文献   

12.
The effect of dihydropyridine agonists and antagonists on neuronal voltage sensitive calcium channels was investigated. The resting intracellular calcium concentration of synaptosomes prepared from whole brain was 110 +/- 9 nM, as assayed by the indicator quin 2. Depolarisation of the synaptosomes with K+ produced an immediate increase in [Ca2+]i. The calcium agonist Bay K 8644 and antagonist nifedipine did not affect [Ca2+]i under resting or depolarising conditions. In addition, K+ stimulated 45Ca2+ uptake into synaptosomes prepared from the hippocampus was insensitive to Bay K 8644 and PY 108-068 in normal or Na+ free conditions. In neuronally derived NG108-15 cells the enantiomers of the dihydropyridine derivative 202-791 showed opposite effects in modulating K+ stimulated 45Ca2+ uptake. (-)-R-202-791 inhibited K+ induced 45Ca2+ uptake with an IC50 of 100 nM and (+)-S-202-791 enhanced K+ stimulated uptake with an EC50 of 80 nM. These results suggest that synaptosomal voltage sensitive calcium channels either are of a different type to those found in peripheral tissues and cells of neural origin or that expression of functional effects of dihydropyridines requires different experimental conditions to those used here.  相似文献   

13.
The role for intracellular Ca2+ in modulating activity of the Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. Na+/H+ exchange was activated by four distinct stimuli: 1) phorbol 12-myristate 13-acetate, 2) thrombin, 3) cell shrinkage, and 4) intracellular acid loading. [Ca2+]i was independently varied between 40 and 200 nM by varying the bathing Ca2+ from 10 nM to 5.0 mM. Thrombin-induced intracellular Ca2+ transients were blocked with bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (MAPTAM). In the absence of stimulators of Na+/H+ exchange, varying [Ca2+]i above or below the basal level of 140 nM did not activate Na+/H+ exchange spontaneously. However, varying [Ca2+]i did affect stimulus-induced activation of Na+/H+ exchange. Activation of the exchanger by phorbol 12-myristate 13-acetate was blunted by reduced intracellular Ca2+ (half-maximal activity at 50-90 nM [Ca2+]i), consistent with a Ca2+ requirement for protein kinase C (Ca2+/phospholipid-dependent enzyme). Activation of the exchanger by thrombin in protein kinase C-depleted cells was also sensitive to reduced intracellular Ca2+ (half-maximal activity at 90-140 nM [Ca2+]i) and was increased 40% by raising [Ca2+]i to 200 nM. Activation of the exchanger by cell shrinkage or intracellular acid loads was not significantly affected over the range of [Ca2+]i tested. Thus, altered [Ca2+]i does not itself affect Na+/H+ exchange activity in vascular smooth muscle but instead modulates activation of the transporter by particular stimuli.  相似文献   

14.
Treatment of adipocytes with depolarizing concentrations of K+ (40 mM) for 60 min increased [Ca2+]i from 158 +/- 28 nM to 328 +/- 38 nM. This significantly reduced (up to 80% inhibition) dephosphorylation of insulin receptor (IR), EGF receptor (EGF-R) and glycogen synthase (GS). The calcium channel blocker, nitrendipine (30 microM), or Ca2+ free medium completely prevented K(+)-induced inhibition of phosphoprotein phosphatase (PPTase). This effect of high [Ca2+]i was completely reversible when the cells were returned into the non-depolarizing medium. Trypsin treatment (4 micrograms/ml) of the membrane fraction containing inhibited PPTase activity, restored dephosphorylation activity to normal suggesting that elevated [Ca2+]i may inhibit PPTase by promoting its association with the inhibitors. These observations indicate that dephosphorylation of IR and GS can be regulated by [Ca2+]i.  相似文献   

15.
Digital imaging fluorescence microscopy was used to study the effect of tert-butyl hydroperoxide (TBHP) on the cytosolic free calcium concentration ([Ca2+]i) of single rat hepatocytes in primary culture. Within minutes of the addition of TBHP, individual hepatocytes displayed one or more peaks of increased [Ca2+]i that promptly returned to the prestimulation level. This was followed by a slower increase of [Ca2+]i that reached a plateau of 696 +/- 260 nM (basal 194 +/- nM) after 20 min. Another rise in [Ca2+]i, abrupt and much larger, preceded the death of the cells after about 45 min. Pretreatment of the hepatocytes with deferoxamine, a ferric iron chelator, or the addition of the antioxidants N,N'-diphenyl-p-phenylenediamine or catechol prevented the loss of viability. Neither the number of hepatocytes displaying the initial [Ca2+]i transients nor the magnitude of these oscillations was affected by deferoxamine, N,N'-diphenyl-p-phenyl-enediamine, or catechol. However, both the plateau phase and the abrupt rise in [Ca2+]i were prevented. Treatment of the hepatocytes with TBHP in a low calcium buffer (less than 2 microM Ca2+) reduced or abolished the initial [Ca2+]i transients and eliminated both the plateau phase and abrupt rise in [Ca2+]i. The onset of cell death was delayed by 10 min in the low calcium medium. Addition of 3.5 mM EGTA to the cultures lowered the basal calcium concentration, prevented both the initial [Ca2+]i spikes and the delayed changes, and further prolonged the onset of cell death. These data indicate that the killing of the cultured hepatocytes by TBHP can be dissociated from changes in intracellular calcium homeostasis. An influx of extracellular Ca2+ ions may aggravate somewhat the mechanisms of cell injury by an oxidative stress and accelerate the time of onset of cell death.  相似文献   

16.
Rabbit gall-bladder epithelial cells were isolated by a combination of Ca2+ omission, enzymatic treatment, and mechanical detachment and had a viability of 96-98% and well preserved morphology. Measurements of cytosolic free Ca2+ concentration ([Ca2+]i) in these cells with the Ca2+-fluorescent indicator fura-2 demonstrated a resting [Ca2+]i level of 115 +/- 12 nM. When used in concentrations which inhibit rabbit gall-bladder isosmotic NaCl absorption (1-100 microM), the Ca2+-channel activator BAY K 8644 caused a dose-dependent increase in the epithelial [Ca2+]i to a maximal value of 850 nM. The effect was dependent on extracellular Ca2+, and was not altered by 1 microM L-verapamil. Depolarization of the epithelial cells with KCl had no effect on [Ca2+]i. The results suggest that BAY K 8644 activates a Ca2+ influx which is not dependent on voltage-gated channels. Cytosolic Ca2+ may be involved in the regulation of isosmotic NaCl absorption in the mammalian gall-bladder.  相似文献   

17.
A fluorescent Ca2+ indicator, acetoxymethyl Quin2, was used to quantify changes in the cytosolic free calcium concentration ([Ca2+]i) of confluent mouse osteoblasts. 1,25 - Dihydroxycholecalciferol (1,25 - (OH)2D3, 10-100 pM), 25-hydroxycholecalciferol (25-(OH)D3, 10-100 nM), parathyroid hormone (PTH(1-84), 0.1-10 nM), and prostaglandin E2 (PGE2, 10-1000 nM) all induced immediate (t less than 15 s) transient increases in [Ca2+]i, from a basal level of 135 +/- 8 nM to levels of 179-224 nM. These increases rapidly returned to a plateau approximately 10% higher than the basal level. 24,25-Dihydroxycholecalciferol (24,25-(OH)2D2, 0.1-10 nM) induced a rapid increase in [Ca2+]i which remained elevated for 5 min before decreasing. The 1,25-(OH)2D3- and PTH-induced spikes were abolished by the prior addition of EGTA and Ca2+ entry blockers (verapamil, nifedipine, 1 microM) while the responses to 25-(OH)D3, 24,25-(OH)2D3, and PGE2 were unaffected. Addition of 1,25-(OH)2D3 + EGTA or PTH + EGTA caused enhanced Ca efflux. Addition of drugs which interfere with calcium sequestration by the endoplasmic reticulum (ER) (caffeine, 4 mM; 8-(diethyl-amino)-octyl 3,4,5-trimethoxybenzoate HCl, 0.5 mM) or mitochondria (antimycin, 10 microM; oligomycin, 5 microM) showed that 25-(OH)D3 and PGE2 mainly mobilized Ca2+ from ER. 1,25-(OH)2D3 and bovine PTH caused a transient increase in [Ca2+]i, 70% of which resulted from Ca2+ influx from outside the cells and 30% by release from the ER. The [Ca2+]i increase induced by 24,25-(OH)2D3 included a 30% contribution from the ER and 70% from the mitochondria.  相似文献   

18.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

19.
The effect of dihydropyridine calcium agonists and antagonists on 45Ca2+ uptake into primary neuronal cell cultures was investigated. K+ stimulated neuronal 45Ca2+ accumulation in a concentration dependent manner. This effect was further enhanced by the calcium agonists Bay K 8644 and (+)-(S)-202-791 with EC50 values of 21 nM and 67 nM respectively. The calcium antagonists PN 200-110 and (-)-(R)-202-791 inhibited Bay K 8644 (1 microM) stimulated uptake with IC50 values of 20 nM and 130 nM respectively. 45Ca2+ efflux from neuronal cells was measured in the presence and absence of Na+. Efflux occurred at a much greater rate from cells incubated in the presence of Na+, indicating the existence of an active Na+/Ca2+ exchanger in these neurons. The data suggests that voltage sensitive calcium channels of these neurons are sensitive to dihydropyridines and thus that dihydropyridine binding sites have a functional role in these neuronal cultures.  相似文献   

20.
The present study was designed to determine the production of nicotinic acid adenine dinucleotide phosphate (NAADP) and its role associated with lysosomes in mediating endothelin-1 (ET-1)-induced vasoconstriction in coronary arteries. HPLC assay showed that NAADP was produced in coronary arterial smooth muscle cells (CASMCs) via endogenous ADP-ribosyl cyclase. Fluorescence microscopic analysis of intracellular Ca2+ concentration ([Ca2+]i) in CASMCs revealed that exogenous 100 nM NAADP increased [Ca2+]i by 711 +/- 47 nM. Lipid bilayer experiments, however, demonstrated that NAADP did not directly activate ryanodine (Rya) receptor Ca2+ release channels on the sarcoplasmic reticulum. In CASMCs pretreated with 100 nM bafilomycin A1 (Baf), an inhibitor of lysosomal Ca2+ release and vacuolar proton pump function, NAADP-induced [Ca2+]i increase was significantly abolished. Moreover, ET-1 significantly increased NAADP formation in CASMCs and resulted in the rise of [Ca2+]i in these cells with a large increase in global Ca2+ level of 1,815 +/- 84 nM. Interestingly, before this large Ca2+ increase, a small Ca2+ spike with an increase in [Ca2+]i of 529 +/- 32 nM was observed. In the presence of Baf (100 nM), this ET-1-induced two-phase [Ca2+]i response was completely abolished, whereas Rya (50 microM) only markedly blocked the ET-1-induced large global Ca2+ increase. Functional studies showed that 100 nM Baf significantly attenuated ET-1-induced maximal constriction from 82.26 +/- 4.42% to 51.80 +/- 4.36%. Our results suggest that a lysosome-mediated Ca2+ regulatory mechanism via NAADP contributes to ET-1-induced Ca2+ mobilization in CASMCs and consequent vasoconstriction of coronary arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号