首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within-generation variability in diapause duration can be viewed either as a mixed Evolutionary Stable Strategy (ESS), a genetic polymorphism of pure strategies, or as bet-hedging. Diapause variability expressed by a single genotype that maximizes mean geometric fitness at the cost of mean arithmetic fitness is a bet-hedging strategy. Bet-hedging differs from mixed ESS and stable genetic polymorphism of pure strategies because in these latter the expected pay-offs for all phenotypes are equal. In insects, individuals with a prolonged diapause (long cycle) lose at least one reproductive opportunity and suffer lower survival before reproduction than those with a short diapause (short cycle). If long-cycle individuals compensate this cost by better adult performance, the compensation leads to a trade-off which could result in mixed ESS or genetic polymorphism of pure strategies since the overall fitness of the two morphs may be similar. In this paper, we show that in the chestnut weevil Curculio elephas adult performance, measured as sex ratio, longevity, weight, and realized fecundity of females, are similar in individuals emerged after one and two years. Long-cycle morphs emerge slightly before short-cycle ones but this eventual advantage for fertility probably does not compensate higher larval mortality and missed reproductive opportunity in long-cycle phenotypes. Therefore, the cost associated with prolonged diapause cannot be completely compensated for by a better adult performance. From these results, and previous data, we conclude that variability in diapause duration cycle is better explained as bet-hedging than mixed ESS or genetic polymorphism of pure strategies.  相似文献   

2.
F. Menu 《Oecologia》1993,96(3):383-390
In the chestnut weevil Curculio elephas, adult emergences spread over 3 or 4 years due to prolonged larval diapause in some individuals. Weevils with an extended diapause emerge, on the average, 1–10 days before those with simple diapause, but whatever the age of insects, emergences occur always from mid-August to early October. When the summer is dry, some adults cannot emerge because of the hardness of the soil. Emergence sucess of adults is smaller in females than in males. The result is that the sex ratio is female-biased before emergence and male-biased after. Summer drought cannot be predicted by the chestnut weevil, and when the soil is dry 27–78% of females cannot emerge and do not reproduce. The year after a summer drought, many reproducing females may emerge from larvae with prolonged diapause. These results suggest an evolutionary influence on the variability in diapause duration. Computer simulations and observations do not support the hypothesis that the main cause of variation in diapause length is the existence of several distinct genotypes within populations. On the contrary, our data strengthen the hypothesis for coin-flipping plasticity discussed in a previous paper.  相似文献   

3.
Invasive species are considered to be the second cause of biodiversity erosion, and one challenge is to determine the life history traits that cause an increased invasion capacity. Prolonged diapause is a major trait in evolution and insect population dynamics, but its effects on invasion speed remain unknown. From a recently developed mathematical approach (integro-difference equations) applied to the insect dormancy, we show that despite a dispersal cost, bet-hedging diapause strategies with low (0.1-0.2) prolonged diapause frequency (emergence after 1 or 2 years) can have a higher invasion speed than a simple diapause strategy (emergence after 1 year) when the environmental stochasticity is sufficiently high. In such conditions, prolonged diapause is a trait supporting invasion capacity by increasing population stochastic growth rate. This conclusion, which applies to a large range of demographic parameters, is in opposition to the usual view that prolonged dormancy is an alternative strategy to dispersal. However, prolonged diapause does not support invasion if the level of environmental stochasticity is low. Therefore, conclusion about its influence on invasion ability needs a good knowledge of environmental stochasticity in the introduction area of considered species.  相似文献   

4.
F. Menu  D. Debouzie 《Oecologia》1993,93(3):367-373
Spreading of emergence over several years due to prolonged diapause in some larvae was shown in the chestnut weevil. Depending on the year the larvae buried themselves in the ground, 32–56% of live adults emerged after 2 or 3 years of underground life. Variability in the duration of diapause was assumed to correspond to tactics of adaptative coin-flipping plasticity. This plasticity must allow the chestnut weevil to respond to the unpredictability of its habitat as measured by the irregularity of chestnut production and summer drought. Indeed, fecundity and adult longevity did not lessen after 2 years of underground life. No drastic decrease in the population size of weevils occurs after bad years; for instance when the number of chestnuts on the study tree is less than 10 000, passers-by can collect all the fruit and about 95% of larvae developing in chestnuts are destroyed. Diapause nature (simple or prolonged) may be related to moisture and gas rates in the ground from October to December. These factors acting in autumn are not known to be involved in the physiological mechanisms that control the production of chestnuts.  相似文献   

5.
Many plants, insects, and crustaceans show within-population variability in dormancy length. The question of whether such variability corresponds to a genetic polymorphism of pure strategies or a mixed bet-hedging strategy, and how the level of phenotypic variability can evolve remain unknown for most species. Using an eco-genetic model rooted in a 25-year ecological field study of a Chestnut weevil, Curculio elephas , we show that its diapause-duration variability is more likely to have evolved by the spread of a bet-hedging strategy than by the establishment of a genetic polymorphism. Investigating further the adaptive dynamics of diapause-duration variability, we find two unanticipated patterns of general interest. First, there is a trade-off between the ability of bet-hedging strategies to persist on an ecological time scale and their ability to invade. The optimal strategy (in terms of persistence) cannot invade, whereas suboptimal bet-hedgers are good invaders. Second, we describe an original evolutionary dynamics where each bet-hedging strategy (defined by its rate of prolonged diapause) resists invasion by all others, so that the first type of bet-hedger to appear persists on an evolutionary time scale. Such "evolutionary priority effect" could drive the evolution of maladapted levels of diapause-duration variability.  相似文献   

6.
Adults of the chestnut weevil Curculio sikkimensis emerged over a 3-year period under laboratory and quasi-field conditions due to a prolonged diapause that occurred at the mature larval stage. Variable proportions of the larvae remained in diapause after a single cold (5 degrees C) treatment of 120 days. Extension of the chilling period to as long as 540 days did not increase the percentage of diapause termination, and excessively long chilling actually reduced the percentage. Chilling was not indispensable to the termination of larval diapause. Diapause intensity was very high and variable, and more than 1000 days at 20 degrees C was necessary to reactivate all diapause larvae. When the diapause larvae were exposed to cycles of low (5 degrees C for 120 days) and high (20 degrees C for 240 days) temperatures, the percentage of diapause termination reached 100% after two or three such cycles. Thus, the prolonged diapause of C. sikkimensis has characteristics similar to the common short winter diapause in other insects, but has unique characteristics that ensure polymodal reactivation over several years.  相似文献   

7.
Extended life cycle in the chestnut weevil: prolonged or repeated diapause?   总被引:2,自引:0,他引:2  
Many insect species extend the life cycle of a part of their population over several years. The adaptive value of these long cycles is now well documented, but the physiological processes underlying them have been little studied. Long life cycles are usually viewed as resulting from prolonged diapause proceeding from a simple extension of the usual winter diapause. However, this hypothesis has not been greatly tested, and information is lacking for species with a larval diapause. The energetic cost of a prolonged larval diapause also needs to be measured, because the few published estimates of lipid consumption concern an imaginal diapause. It is not therefore clear whether the negligible lipid consumption observed during adult prolonged diapause can be extrapolated to larval diapause. From microrespirometry and lipid measures in the chestnut weevil, Curculio elephas Gyllenhal (Coleoptera: Curculionidae), we show that: (1) in contrast to the usual hypothesis, the long cycle does not result from an extension of larval winter diapause, but is due to a prolonged diapause occurring secondarily to a developmental phase, and (2) energy consumption during the prolonged diapause is not negligible, but is provided for by a higher initial lipid content in the long cycle individuals. The adaptive value of the observed cycle is discussed.  相似文献   

8.
Bet-hedging theory addresses how individuals should optimize fitness in varying and unpredictable environments by sacrificing mean fitness to decrease variation in fitness. So far, three main bet-hedging strategies have been described: conservative bet-hedging (play it safe), diversified bet-hedging (don’t put all eggs in one basket) and adaptive coin flipping (choose a strategy at random from a fixed distribution). Within this context, we analyse the trade-off between many small eggs (or seeds) and few large, given an unpredictable environment. Our model is an extension of previous models and allows for any combination of the bet-hedging strategies mentioned above. In our individual-based model (accounting for both ecological and evolutionary forces), the optimal bet-hedging strategy is a combination of conservative and diversified bet-hedging and adaptive coin flipping, which means a variation in egg size both within clutches and between years. Hence, we show how phenotypic variation within a population, often assumed to be due to non-adaptive variation, instead can be the result of females having this mixed strategy. Our results provide a new perspective on bet-hedging and stress the importance of extreme events in life history evolution.  相似文献   

9.
In temperate areas, dormancy (diapause and/or quiescence) enables herbivorous insect species to persist and thrive by synchronizing growth and reproduction with the seasonal phenology of their host plants. Within-population variability in dormancy increases survival chances under unpredictable environmental changes. However, prolonged dormancy may be costly, incurring trade-offs in important adult fitness traits such as life span and reproduction. We used the European cherry fruit fly, Rhagoletis cerasi, a stenophagous, univoltine species that overwinters in the pupal stage for usually one or more years to test the hypotheses that prolonged dormancy of pupae has trade-offs with body size, survival and reproduction of the resulting adults. We used two geographically isolated populations of R. cerasi to compare the demographic traits of adults obtained from pupae subjected to one or two cycles of warm-cold periods (annual and prolonged dormancy respectively). Regardless of population, adults from pupae that experienced prolonged dormancy were larger than counterparts emerging within 1year. Prolonged dormancy did not affect adult longevity but both lifetime fecundity and oviposition were significantly decreased. Extension of the life cycle of some individuals in R. cerasi populations in association with prolonged dormancy is likely a bet-hedging strategy.  相似文献   

10.
Many animal species experiencing spatial or interannual fluctuations of their environment are capable of prolonged diapause, a kind of dormancy that extends over more than one year. Such a prolonged diapause is commonly perceived as a temporal demographic refuge in stochastic environments, but empirical evidence is still lacking of its consequences on temporal population genetic structures. In this long-term study, we investigated how a particular pattern of prolonged diapause may influence the temporal population genetics of the invasive seed-specialized wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in southeastern France. We characterized the diapause strategy of M. schimitscheki using records of emergence from diapause in 97 larval cohorts, and we conducted a temporal population genetic study on a natural invasive wasp population sampled during ten consecutive years (1999–2008) using polymorphic microsatellite markers. We found that M. schimitscheki can undergo a prolonged diapause of up to five years and displays two main adult emergence peaks after two and four years of diapause. Such a bimodal and atypical pattern did not disrupt temporal gene flow between cohorts produced in even and in odd years during the period of the study. Unexpectedly, we found that this wasp population consisted of two distinct genetic sub-populations that strongly diverged in their diapause strategies, with very few admixed individuals. One of the sub-populations displayed both short and prolonged diapause (2 and 4 years respectively) in equal proportions, whereas the other sub-population displayed mainly short diapause. This study provided empirical evidence that prolonged diapause phenotypes can substantially contribute to reproduction and impact temporal genetic structures. Prolonged diapause is likely to act as both demographic and genetic refuges for insect populations living in fluctuating environments.  相似文献   

11.
The chestnut weevil Curculio sikkimensis undergoes a prolonged larval diapause that is completed by repeated exposure to chilling and warming. We examined the possible reversibility of diapause intensity in response to temperature changes. All larvae were subjected to an initial chilling followed by incubation at 20°C to force pupation of the 1-year-type larvae that require only one winter for diapause completion. We then exposed the larvae remaining in prolonged diapause to a second chilling at 5°C for different lengths of time, preceded or not preceded by incubation at 20°C (moderately high) and/or 25°C (high) and followed by a final post-chilling reincubation at 20°C. Many of the prolonged-diapausing larvae subjected only to a brief second chilling were re-activated upon reincubation. However, short exposure to 25°C before this second chilling dramatically decreased the percentage of larvae completing diapause. When larvae were exposed to 25°C for a short period, then incubated at 20°C and subjected to the brief second chilling, many were re-activated during reincubation. The chilling time required for most of the larvae to complete diapause decreased after pre-chilling incubation at 20°C and increased after incubation at 25°C. These results demonstrate that diapause intensity in C. sikkimensis changes reversibly in response to changes in ambient temperature.  相似文献   

12.
Jens Joschinski  Dries Bonte 《Oikos》2021,130(8):1240-1250
Many organisms escape from lethal climatological conditions by entering a resistant resting stage called diapause, which needs to be optimally timed with seasonal change. As climate change exerts selection pressure on phenology, the evolution of mean diapause timing, but also of phenotypic plasticity and bet-hedging strategies is expected. The potential of the latter strategy as a means of coping with environmental unpredictability has received little attention in the climate change literature. Populations should be adapted to spatial variation in local conditions; contemporary patterns of phenological strategies across a geographic range may hence provide information about their evolvability. We thus extracted 458 diapause reaction norms from 60 studies. First, we correlated mean diapause timing with mean winter onset. Then we partitioned the reaction norm variance into a temporal component (phenotypic plasticity) and among-offspring variance (diversified bet-hedging) and correlated this variance composition with variability of winter onset. Mean diapause timing correlated reasonably well with mean winter onset, except for populations at high latitudes, which apparently failed to track early onsets. Variance among offspring was, however, limited and correlated only weakly with environmental variability, indicating little scope for bet-hedging. The apparent lack of phenological bet-hedging strategies may pose a risk in a less predictable climate, but we also highlight the need for more data on alternative strategies.  相似文献   

13.
We test the adaptive value of clutch size observed in a natural population of the chestnut weevil Curculio elephas. Clutch size is defined as the number of immatures per infested chestnut. In natural conditions, clutch size averages 1.7 eggs. By manipulating clutch size in the field, we demonstrate that deviations from the theoretical ”Lack clutch size”, estimated as eight immatures, are mainly due to proximate and delayed effects of clutch size on offspring performance. We show the existence of a trade-off between clutch size and larval weight. The latter, a key life-history trait, is highly correlated with fitness because it is a strong determinant of larval survival and potential fecundity of offspring females. The fitness of different potential oviposition strategies characterized by their clutch sizes, ranging from one to nine immatures, was calculated from field- estimated parameters. Chestnut weevil females obtain an evolutionary advantage by laying their eggs singly, since, for instance, fitness of single-egg clutches exceeds fitness of two-egg clutches and four-egg clutches by 8.0% and 15.1% respectively. Received 4 August 1999 / Accepted: 7 October 1999  相似文献   

14.
Many species produce eggs or seeds that refrain from hatching despite developmental preparedness and favorable environmental conditions. Instead, these propagules hatch in intervals over long periods. Such variable hatch or germination tactics may represent bet-hedging against future catastrophes. Empiricists have independently recognized these approaches in diverse species. Terms such as seed banking, delayed egg hatching, and embryonic diapause have been used to describe these tactics, but connections between fields of study have been rare. Here we suggest a general term, germ banking, to incorporate all previous terms, unifying many seemingly disparate biological strategies under a single definition. We define the phenomenon of germ banking and use several biological examples to illustrate it. We then discuss the different causes of variation in emergence timing, delineate which constitute germ banking, and distinguish between germ banking and optimal timing of diapause. The wide-ranging consequences of germ banking are discussed, including modification of the age structure of a population, the alteration of microevolutionary dynamics, the migration of alleles from the past, the maintenance of genetic and species diversity, and the promotion of species coexistence. We end by posing questions to direct future research.  相似文献   

15.
The life cycle of the cabbage beetle Colaphellus bowringi in southeastern China is complex due to four options for adult development: summer diapause, winter diapause, prolonged diapsuse, and nondiapause. However, detailed information on the multi‐year emergence patterns of diapausing individuals in this beetle has not been documented. In this study, we monitored the adult emergence patterns of diapausing individuals and estimated the influence of the diapause‐inducing temperature and photoperiod on the incidence of prolonged diapause under seminatural conditions for several years. The duration of diapause for adults collected from the vegetable fields in different years varied from several months to 5 years. Approximately 25.9%–29.2% of individuals showed prolonged diapause (emergence more than 1 year after entering diapause) over the 5 years of observation. Furthermore, regardless of insect age, the emergence of diapausing adults from the soil always occurred between mid‐February and March in spring and between late August and mid‐October in autumn, when the host plants were available. The influence of diapause‐inducing temperatures (22, 25, and 28°C) combined with different photoperiods (L:D 12:12 h and L:D 14:10 h) on diapause duration was tested under seminatural conditions. Pairwise comparisons of diapause duration performed by the log‐rank test revealed that the low temperature of 22°C combined with the long photoperiod of L:D 14:10 h induced the longest diapause duration, whereas the low temperature of 22°C combined with the short photoperiod of L:D 12:12 h induced the highest proportion of prolonged diapause. This study indicates that C. bowringi adopts a multi‐year dormancy strategy to survive local environmental conditions and unpredictable risks.  相似文献   

16.
Diapause development is a complex process involving several eco‐physiological phases. Understanding these phases, especially diapause termination, is vital for interpreting the life history of many insect species and for developing suitable predictive models of population dynamics. The pine processionary moth is a major defoliator of pine and a vertebrate health hazard in the Mediterranean region. This species can display either univoltine or semivoltine development, with a pupal diapause extending from a few months to several years, respectively. Although the ecological and applied importance of diapause is acknowledged, its physiological regulation in either case remains obscure. In the present study, we characterize pre‐termination, termination and post‐termination phases of pupae developing as univoltine or remaining in prolonged diapause. Changes in metabolic activity are monitored continuously using thermocouples, comprising a novel method based on direct calorimetry, and periodically by use of O2 respirometry. The two methods clearly detect diapause termination in both types of pupae before any visible morphological or behavioural changes can be observed. Univoltine individuals are characterized by an increase in metabolic activity from pre‐termination through to termination and post‐termination, ultimately resulting in emergence. Remarkably, a synchronous termination is observed in individuals that enter prolonged diapause instead of emerging; however, in these pupae, the increased metabolic activity is only transient. The present study represents a starting point toward understanding the eco‐physiology of diapause development processes in the pupae of the pine processionary moth.  相似文献   

17.
A review of the literature for the hormonal control of reproduction and diapause in Coleoptera is presented. The role of juvenile hormone and juvenile hormone esterase (JHE) in the control of the different life history strategies of the boll weevil are examined. Elevated levels of hemolymph JHE were found to be positively correlated with survival throughout the winter in South Texas population of weevils. Winter weevils were examined for hemolymph vitellogenin (Vg) and their subsequent survival was monitored. The majority of weevils surviving beyond ten weeks had no hemolymph Vg. We conclude that elevated hemolymph JHE and the absence of Vg are good predictors of survivors in the South Texas population. The hormonal basis of diapause termination was examined using hormone treatment and implant therapy. We were unsuccessful in our attempt to induce post-diapause reproductive development with all of our treatments. Only weevils given access to a food source were capable of reproductive development. Our recent experimental findings in the control of Vg synthesis and uptake in the boll weevil are reviewed. Arch. Insect Biochem. Physiol. 35:455–477, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Long life cycles in insects   总被引:1,自引:0,他引:1  
Long life cycles covering more than one year are known for all orders of insects. There are different mechanisms of prolongation of the life cycle: (1) slow larval development; (2) prolongation of the adult stage with several reproduction periods; (3) prolongation of diapause; (4) combination of these mechanisms in one life cycle. Lasting suboptimal conditions (such as low temperature, low quality of food or instability of food resources, natural enemies, etc.) tend to prolong life cycles of all individuals in a population. In this case, the larvae feed and develop for longer than a year, and the active periods are interrupted by dormancy periods. The nature of this dormancy is unknown: in some cases it appears to be simple quiescence, in others it has been experimentally shown to be a true diapause. Induction and termination of these repeated dormancy states are controlled by different environmental cues, the day-length being the principal one as in the case of the annual diapause. The long life cycles resulting from prolonged adult lifespan were experimentally studied mainly in beetles and true bugs. The possibility of repeated diapause and several periods of reproductive activity is related to the fact that the adults remain sensitive to day length, which is the main environmental cue controlling their alternative physiological states (reproduction vs. diapause). Habitats with unpredictable environmental changes stimulate some individuals in a population to extend their life cycles by prolonged diapause. The properties of this diapause are poorly understood, but results of studies of a few species suggest that this physiological state differs from the true annual diapause in deeper suppression of metabolism. Induction and intensity of prolonged diapause in some species appear to be genetically controlled, so that the duration of prolonged diapause varies among individuals in a group, even that of sibles reared under identical conditions. Thus, long life cycles are realized due to the ability of insects to interrupt activity repeatedly and enter dormancy. This provides high resistance to various environmental factors. Regardless of the nature of this dormancy (quiescence, annual or prolonged diapause, or other forms) and the life cycle duration, the adults always appear synchronously after dormancy in the nature. The only feasible explanation of this is the presence of a special synchronizing mechanism, most likely both exo- and endogenous, since the adults appear not only synchronously but also in the period best suited for reproduction. As a whole, the long life cycles resulting from various structural modifications of the annual life cycle, are typical of the species living under stable suboptimal conditions when the pressure of individual environmental factors is close to the tolerance limits of the species, even though it represents its norm of existence. Such life cycles are also typical of the insects living in unstable environments with unpredictable variability of conditions, those developing in cones and galls, feeding on flowers, seeds, or fruits with limited periods of availability, those associated with the plant species with irregular patterns of blossoming and fruiting, and those consuming low-quality food or depending on unpredictable food sources (e.g., predators or parasites). Long cycles are more common in: (1) insect species at high latitudes and mountain landscapes where the vegetation season is short and unstable; (2) species living in deserts or arid areas where precipitation is unstable and often insufficient for survival of food plants; (3) inhabitants of cold and temporary water bodies that are not filled with water every year. At the same time, long life cycles sometimes occur in insects from other climatic zones as well. It is also important to note that while there is a large body of literature dealing with the long life cycles in insects, it mostly focuses on external aspects of the phenomenon. Experimental studies are needed to understand this phenomenon, first of all the nature of dormancy and mechanisms of synchronization of adult emergence.  相似文献   

19.
D. FRISCH 《Freshwater Biology》2002,47(7):1269-1281
1. The survival of cyclopoid copepods was investigated in a floodplain for 2 years where flooding occurred during the cold season. The cyclopoid community was studied in three waterbodies with distinct hydroperiods: a permanent pond connected to the flooded area during inundation, a temporary pool that is part of the flooded area and an isolated temporary pool.
2. Field studies, including data obtained from samples of water, sediment and soil, showed the overall predominance of species with a summer diapause over those with a winter diapause or without diapause. Emergence of cyclopoid copepods at the onset of flooding, examined using emergence traps and data from recently filled or still isolated temporary pools, showed that some species can survive several months of drying.
3. The ability of the diapausing fourth copepodid stages of Cyclops strenuus and C. insignis , the two cyclopoids most abundant during winter and spring flooding, to survive terrestrial conditions was tested in laboratory experiments. Both species survived for several months, but rates differed among the species. A higher percentage of C. strenuus survived for a longer period, possibly explaining why this species was relatively more abundant in more temporary habitats.
4. Both dormancy and dispersal facilitated survival of cyclopoid copepods in transient habitats connected to each other during flood periods. Dormancy was the most important survival strategy, whereas dispersal could be more important following prolonged periods without flooding.  相似文献   

20.
Abstract The bruchid beetle Bruchidius dorsalis Fahraeus (Coleoptera: Bruchidae) has been known to undergo larval diapause during the final instar under short photoperiods ( Kurota & Shimada, 2001 ). This species has a multivoltine life cycle and the overwintering stages show a geographical variation across Japan ( Kurota & Shimada, 2002 ). In cooler areas, overwintering occurs during the final instar, whereas in warmer climates overwintering can occur during several developmental stages: non‐diapausing young instars, diapausing instars, and adults. In this study, we investigated the adult reproductive diapause in three populations from different geographical regions to clarify the role of geographical variation on overwintering strategies. We found that: (1) B. dorsalis entered reproductive diapause in addition to larval diapause under short photoperiods, (2) diapause propensity was higher and the critical photoperiod was longer in populations from cooler regions, and (3) the sensitive photoperiod range was the first 5 days after emergence. Predictions of the overwintering stage, derived from critical photoperiods, were consistent with actual overwintering stages observed in each population. The geographical variation in diapause induction is likely to reflect the adaptive overwintering strategy in each local environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号