首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spinocerebellar ataxia type 3 is the most common form of autosomal dominant cerebellar ataxia. It is a severe progressive neurological disorder caused by an expansion of an exonic CAG repeat of the MJD1 gene. The repeated sequence is polymorphic among both normal individuals and patients. In general, expanded alleles are paternally inherited and the disorder exhibits anticipation. We performed a PCR-based study to determine polymorphisms of the number of CAG repeats of the MJD1 gene in an anonymous sample of normal Brazilian individuals. We also analyzed DNA samples from 9 patients with ataxia. We identified 29 different allele sizes ranging from 12 to 40 CAG repeats, with heterozygosity of 79%. The distribution of allele sizes showed two major peaks of 16 (7%) and 26 (10.1%) CAG repeats. When grouping normal alleles by size, we observed that the distribution varies between males and females, and a significant deviation from the Hardy-Weinberg equilibrium was observed with an excess of normal large alleles among males. We also detected expanded alleles with 68-73 CAG repeats in 3 out of 9 ataxic patients.  相似文献   

3.
Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disease caused by unstable expansion of a CAG repeat in the DRPLA gene. We performed detailed quantitative analysis of the size and the size distribution (range) of the expanded CAG repeats in various regions of the CNS of eight autopsied patients with DRPLA. Expanded alleles (AE) showed considerable variations in size, as well as in range, depending on the region of the CNS, whereas normal alleles did not show such variations, which indicates the occurrence of somatic mosaicism of AE in the CNS. The AE in the cerebellar cortex were consistently smaller by two to five repeat units than those in the cerebellar white matter. Moreover, the AE in the cerebral cortex were smaller by one to four repeat units than those in the cerebral white matter. These results suggest that the smaller AE in the cerebellar and cerebral cortices represent those of neuronal cells. The ranges of the AE in the cerebral cortex, cerebral white matter, and cerebellar white matter showed considerable variation ranging from 9 to 23 repeat units, whereas those in the cerebellar cortex showed little variance and were approximately 7 repeat units. The ranges of the AE in the cerebral cortex, cerebral white matter, and cerebellar white matter were much broader in patients with higher ages at death than they were in patients with lower ages at death, raising the possibility that the range of AE increases with time, as the result of mitotic instability of AE.  相似文献   

4.
Autosomal dominant cerebellar ataxia is a group of clinically and genetically heterogeneous disorders. We carried out genomewide linkage analysis in 15 families with autosomal dominant pure cerebellar ataxia (ADPCA). Evidence for linkage to chromosome 19p markers was found in nine families, and combined multipoint analysis refined the candidate region to a 13.3-cM interval in 19p13.1-p13.2. The remaining six families were excluded for this region. Analysis of CAG-repeat expansion in the alpha1A-voltage-dependent calcium channel (CACNL1A4) gene lying in 19p13.1, recently identified among 8 small American kindreds with ADPCA (spinocerebellar ataxia type 6 [SCA6]), revealed that 8 of the 15 families studied had similar, very small expansion in this gene: all affected individuals had larger alleles (range of CAG repeats 21-25), compared with alleles observed in neurologically normal Japanese (range 5-20 repeats). Inverse correlation between the CAG-repeat number and the age at onset was found in affected individuals with expansion. The number of CAG repeats in expanded chromosomes was completely stable within each family, which was consistent with the fact that anticipation was not statistically proved in the SCA6 families that we studied. We conclude that more than half of Japanese cases of ADPCA map to 19p13.1-p13.2 and are strongly associated with the mild CAG expansion in the SCA6/CACNL1A4 gene.  相似文献   

5.
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare autosomal dominant neurodegenerative disease characterized by various combinations of ataxia, choreoathetosis, myoclonus, epilepsy and dementia as well as various ages of onset. We have identified a specific unstable trinucleotide repeat expansion in a gene on the short arm of chromosome 12 as the pathogenic mutation for DRPLA. We investigated how the degree of the expansion of the CAG repeat affects the clinical manifestations of DRPLA. The sizes of the expanded alleles were well correlated with the ages of onset (r = −0.6955, P < 0.001). Patients with progressive myoclonus epilepsy (PME) phenotype had larger expansions (62–79 repeats) and earlier ages of onset (onset before age 20). Furthermore, most of the patients with PME phenotype inherited their expanded alleles from their affected fathers. On the other hand, patients with non-PME phenotype showed later ages of onset (onset after age 20) and smaller expansions (54–67 repeats). When ages of onset of each clinical symptom are compared with sizes of the CAG repeat, there is again a remarkably high correlation of the sizes of CAG repeat with each of the clinical symptoms. Thus the wide variation in clinical manifestations of DRPLA can now be clearly explained based on the degree of CAG repeat expansion, which strongly indicates that the expanded alleles are intimately involved in the neuronal degeneration in dentatofugal and pallidofugal systems.  相似文献   

6.
To identify various subtypes of spinocerebellar ataxias (SCAs) among 57 unrelated individuals clinically diagnosed as ataxia patients we analysed the SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci for expansion of CAG repeats. We detected CAG repeat expansion in 6 patients (10.5%) at the SCA1 locus. Ten of the 57 patients (17.5%) had CAG repeat expansion at the SCA2 locus, while four had CAG expansion at the SCA3/MJD locus (7%). At the SCA6 locus there was a single patient (1.8%) with 21 CAG repeats. We have not detected any patient with expansion in the SCA7 and DRPLA loci. To test whether the frequencies of the large normal alleles in SCA1, SCA2 and SCA6 loci can reflect some light on prevalence of the subtypes of SCAs we studied the CAG repeat variation in these loci in nine ethnic sub-populations of eastern India from which the patients originated. We report here that the frequency of large normal alleles (>31 CAG repeats) in SCA1 locus to be 0.211 of 394 chromosomes studied. We also report that the frequency of large normal alleles (>22 CAG repeats) at the SCA2 locus is 0.038 while at the SCA6 locus frequency of large normal alleles (>13 repeats) is 0.032. We discussed our data in light of the distribution of normal alleles and prevalence of SCAs in the Japanese and white populations.  相似文献   

7.
Genetic anticipation – increasing severity and a decrease in the age of onset with successive generations of a pedigree – is clearly present in autosomal dominant cerebellar ataxia (ADCA). Anticipation is correlated with expansion of the CAG/CTG repeat sequence to sizes above those in the normal range through the generations of a pedigree. Genetic heterogeneity has been demonstrated for ADCA, with four cloned genes (SCA1, SCA2, SCA3/MJD, and SCA6) and three mapped loci (SCA4, SCA5 and SCA7). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), presents anticipation with CAG/CTG repeat expansions. We had previously analysed ADCA patients who had not shown repeat expansions in cloned genes for CAG/CTG repeat expansions by the repeat expansion detection method (RED) and had detected expansions of between 48 and 88 units in 17 unrelated familial cases. We present here an analysis of 13 genes and expressed sequence tags (ESTs) containing 10 or more CAG/ CTG repeat sequences selected from public databases in the 17 unrelated ADCA patients. Of the 13 selected genes and ESTs, 9 were found to be polymorphic with heterozygosities ranging between 0.09 and 0.80 and 2 to 17 alleles. In ADCA patients none of the loci showed expansions above the normal range of the CAG/CTG repeat sequences, excluding them as the mutation causing ADCA. Received: 28 May 1997 / Accepted: 30 June 1997  相似文献   

8.

Introduction

SCA17 is an autosomal dominant cerebellar ataxia with expansion of the CAG/CAA trinucleotide repeats in the TATA-binding protein (TBP) gene. SCA17 can have various clinical presentations including parkinsonism, ataxia, chorea and dystonia. SCA17 is diagnosed by detecting the expanded CAG repeats in the TBP gene; however, in the literature, pathologic repeat numbers as low as 41 overlap with normal repeat numbers.

Methods

The subjects in this study included patients with involuntary movement disorders such as cerebellar ataxia, parkinsonism, chorea and dystonia who visited Seoul National University Hospital between Jan. 2006 and Apr. 2014 and were screened for SCA17. Those who were diagnosed with other genetic diseases or nondegenerative diseases were excluded. DNA from healthy subjects who did not have a family history of parkinsonism, ataxia, psychiatric symptoms, chorea or dystonia served as the control. In total, 5242 chromosomes from 2099 patients and 522 normal controls were analyzed.

Results

The total number of patients included in the analysis was 2099 (parkinsonism, 1706; ataxia, 345; chorea, 37; and dystonia, 11). In the normal control, up to 44 repeats were found. In the 44 repeat group, there were 7 (0.3%) patients and 1 (0.2%) normal control. In 43 repeat group, there were 8 (0.4%) patients and 2 (0.4%) normal controls. In the 42 repeat group, there were 16 (0.8%) patients and 3 (0.6%) normal controls. In 41 repeat group, there were 48 (2.3%) patients and 8 (1.5%) normal controls. Considering the overlaps and non-significant differences in allelic frequencies between the patients and the normal controls with low-expansions, we could not determine a definitive cutoff value for the pathologic CAG repeat number of SCA17.

Conclusion

Because the statistical analysis between the normal controls and patients with low range expansions failed to show any differences so far, we must consider that clinical cases with low range expansions could be idiopathic movement disorders showing coincidental CAG/CAA expansions. Thus, we need to reconsider the pathologic role of low range expansions (41–42). Long term follow up and comprehensive investigations using autopsy and imaging studies in patients and controls with low range expansions are necessary to determine the cutoff value for the pathologic CAG repeat number of SCA17.  相似文献   

9.
Dentatorubral pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder caused by expansion of an unstable, tandemly repeated trinucleotide sequence, (CAG)n, in a novel gene on human chromosome 12p12-pter. Molecular diagnosis of DRPLA uses the polymerase chain reaction (PCR) to amplify and characterize the number of CAG repeats carried by individuals. The PCR analysis is fairly straightforward when two alleles are identified. However, when only a single allele is observed, it is difficult to know whether the sample is homozygous or whether there was failure to amplify the second allele. We describe a Southern analysis for detection of the DRPLA CAG repeat, providing an independent method for the assessment of expanded alleles. Received: 15 May 1996 / Revised: 23 September 1996  相似文献   

10.
Molecular pathology of dentatorubral-pallidoluysian atrophy.   总被引:1,自引:0,他引:1  
Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant disorder characterized clinically by myoclonus, epilepsy, cerebellar ataxia, choreoathetosis and dementia. Cardinal pathological features of DRPLA are a combined degeneration of both the dentatorubral and the pallidoluysian systems. Although the early sporadic cases were reported by Western neuropathologists, a strong heritability and an age of onset-dependent variability of the clinical features were carefully deduced by Japanese clinicians. The disease is fairly common in Japan, but extremely rare in Caucasians. Since the gene was identified in 1994, DRPLA is known as one of the CAG repeat expansion diseases, in which the responsible gene is located on chromosome 12p and its product is called atrophin 1. DRPLA shows prominent 'anticipation', which is genetically clearly explained by a marked instability of the expanded CAG repeat length during spermatogenesis. Moreover, the instability of the CAG repeat length also seems to occur in the somatic cells, resulting in 'somatic mosaicism'. Possible mechanism(s) underlying the neuronal cell death in DRPLA are discussed in terms of molecular pathological points of view.  相似文献   

11.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by cerebellar ataxia and pyramidal signs associated in varying degrees with a dystonic-rigid extrapyramidal syndrome or peripheral amyotrophy. Unstable CAG trinucleotide repeat expansion in the MJD gene on the long arm of chromosome 14 has been identified as the pathological mutation for MJD. While investigating the distribution of CAG repeat lengths of the MJD gene in Taiwan’s population, we have identified 18 MJD-affected patients and 12 at-risk individuals in seven families. In addition, we have analyzed the range of CAG repeat lengths in 96 control individuals. The CAG repeat number ranged from 13 to 44 in the controls and 72–85 in the affected and at- risk individuals. Our results indicated that the CAG repeat number was inversely correlated with the age of onset. The differences in CAG repeat length between parent and child and between siblings are greater with paternal transmission than maternal transmission. Our data show a tendency towards the phenomenon of anticipation in the MJD families but do not support unidirectional expansion of CAG repeats during transmission. We also demonstrated that PCR amplification of the CAG repeats in the MJD gene from villous DNA was possible and might prove useful as a diagnostic tool for affected families in the future. Received: 4 December 1996 / Accepted: 5 March 1997  相似文献   

12.
Spinocerebellar ataxia 7 (SCA7) is a progressive autosomal dominant neurodegenerative disorder characterized clinically by cerebellar ataxia associated with progressive macular dystrophy. The disease affects primarily the cerebellum and the retina, but also many other CNS structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat encoding a polyglutamine tract in the corresponding protein, ataxin-7. Normal SCA7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36-306 CAG repeats. SCA7 has a number of features in common with other diseases with polyglutamine expansions: (i) the appearance of clinical symptoms above a threshold number of CAG repeats (>35); (ii) a correlation between the size of the expansion and the rate of progression of the disease: the larger the repeat, the faster the progression; (iii) instability of the repeat sequence (approximately 12 CAG/transmission) that accounts for the marked anticipation of approximately 20 years/generation. The CAG repeat sequence is particularly unstable and de novo mutations can occur during paternal transmissions of intermediate size alleles (28-35 CAG repeats). This can explain the persistence of the disease in spite of the anticipation that should have resulted in its extinction.  相似文献   

13.
脊髓小脑共济失调第7型的临床特征及基因突变研究   总被引:1,自引:0,他引:1  
殷鑫浈  张宝荣  吴鼎文  田均  张灏 《遗传》2007,29(6):688-692
对一脊髓小脑性共济失调(Spinocerebellar ataxia, SCA)家系的患者进行临床特征及相关基因突变研究。对该家系进行详细的病史采集, 并对患者行视力、眼底血管造影、眼底拍照、视觉诱发电位、视网膜电图以及头颅MRI等辅助检查; 采用聚合酶链反应分别扩增SCA1、SCA2、SCA3、SCA6、SCA7、SCA17及DRPLA基因的CAG重复序列, 用8%变性聚丙烯酰胺凝胶电泳及直接测序进行突变分析。结果2名患者主要表现为小脑性共济失调、视力下降、眼底视网膜色素变性、小脑和脑干萎缩; 并存在SCA7基因的突变, 而未发现SCA1、SCA2、SCA3、SCA6、SCA17及DRPLA基因突变。说明该家系为SCA7突变家系, SCA7基因中CAG三核苷酸重复拷贝数的异常扩增是其致病原因。  相似文献   

14.
Autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders caused by unstable CAG repeat expansions encoding polyglutamine tracts. Five spinocerebellar ataxia genes (SCA1, SCA2, SCA3, SCA6 and SCA7) and another related dominant ataxia gene (DRPLA) have been cloned, allowing the genetic classification of these disorders. We present here the molecular analysis of 87 unrelated familial and 60 sporadic Spanish cases of spinocerebellar ataxia. For ADCA cases 15% were SCA2, 15% SCA3, 6% SCA1, 3% SCA7, 1% SCA6 and 1% DRPLA, an extremely rare mutation in Caucasoid populations. About 58% of ADCA cases remained genetically unclassified. All the SCA1 cases belong to the same geographical area and share a common haplotype for the SCA1 mutation. The expanded alleles ranged from 41 to 59 repeats for SCA1, 17 to 29 for SCA2, 67 to 77 for SCA3, and 38 to 113 for SCA7. One SCA6 case had 25 repeats and one DRPLA case had 63 repeats. The highest CAG repeat variation in meiotic transmission of expanded alleles was detected in SCA7, this being of +67 units in one paternal transmission and giving rise to a 113 CAG repeat allele in a patient who died at 3 years of age. Meiotic transmissions have also shown a tendency to more frequent paternal transmission of expanded alleles in SCA1 and maternal in SCA7. All SCA1 and SCA2 expanded alleles analyzed consisted of pure CAG repeats, whereas normal alleles were interrupted by 1–2 CAT trinucleotides in SCA1, except for three alleles of 6, 14 and 21 CAG repeats, and by 1–3 CAA trinucleotides in SCA2. No SCA or DRPLA mutations were detected in the 60 sporadic cases of spinocerebellar ataxia, but one late onset patient was identified as a recessive form due to GAA-repeat expansions in the Friedreich’s ataxia gene. Received: 6 January 1999 / Accepted: 18 March 1999  相似文献   

15.
Spinocerebellar ataxias (SCAs) are caused by expansion of (CAG)n triplet repeats. These repeats occur as polymorphic forms in general population; however, beyond a threshold size they become pathogenic. The sizes and distributions of repeats at the SCA1, SCA2, SCA3, SCA7 and DRPLA loci were assessed by molecular analysis of 124 unrelated ataxia patients and 44 controls, and the association of larger normal (LN) alleles with disease prevalence was evaluated. Triplet repeat expansions in the disease range were detected in 8% (10/124) of the cases, with the majority having expansion at the SCA1 locus. Normal allele ranges in the cohort studied were similar to the Caucasian and North Indian populations but differed from the Korean and Japanese populations at various loci. The percentage of individuals with LN alleles at the SCA1 and SCA2 loci was higher than reported in Indians, Japanese and Caucasians. LN alleles showed a good correlation with the incidence of SCA1, indicating that SCA1 is the most prevalent ataxia in our population. The majority of cases with clinical symptoms of SCA could not be diagnosed by established CAG repeat criteria, suggesting that there may be an alternative basis for disease pathogenesis: (i) Repeats lower than the normal range may also result in abnormal phenotypes (ii) LN alleles at different loci in the same individual may contribute to symptoms (iii) Exogenous factors may play a role in triggering disease symptoms in individuals with LN alleles (iv) Triplet repeats may reach the disease range in the brain but not in the blood.  相似文献   

16.
The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 and MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% had SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively.  相似文献   

17.
The SCA7 mutation has been found in 54 patients and 7 at-risk subjects from 17 families who have autosomal dominant cerebellar ataxia (ADCA) II with progressive pigmentary maculopathy. In one isolated case, haplotype reconstruction through three generations confirmed a de novo mutation owing to paternal meiotic instability. Different disease-associated haplotypes segregated among the SCA7-positive kindreds, which indicated a multiple origin of the mutation. One family with the clinical phenotype of ADCA type II did not have the CAG expansion that indicated locus heterogeneity. The distribution of the repeat size in 944 independent normal chromosomes from controls, unaffected at-risk subjects, and one affected individual fell into two ranges. The majority of the alleles were in the first range of 7-19 CAG repeats. A second range could be identified with 28-35 repeats, and we provide evidence that these repeats represent intermediate alleles that are prone to further expansion. The repeat size of the pathological allele, the widest reported for all CAG-repeat disorders, ranged from 37 to approximately 220. The repeat size showed significant negative correlation with both age at onset and age at death. Analysis of the clinical features in the patients with SCA7 confirmed that the most frequently associated features are pigmentary maculopathy, pyramidal tract involvement, and slow saccades. The subjects with <49 repeats tended to have a less complicated neurological phenotype and a longer disease duration, whereas the converse applied to subjects with >/=49 repeats. The degree of instability during meiotic transmission was greater than in all other CAG-repeat disorders and was particularly striking in paternal transmission, in which a median increase in repeat size of 6 and an interquartile range of 12 were observed, versus a median increase of 3 and interquartile range of 3.5 in maternal transmission.  相似文献   

18.
Dentato-rubro-pallido-luysian atrophy (DRPLA) is considered to be rare in Europe. We describe a Danish family in which affected individuals in at least three generations have been diagnosed as suffering from Huntington's disease. Because analysis of the Huntingtin gene revealed normal alleles and various of the patients had seizures, we analysed the B37 gene and found significantly elongated CAG repeats as have been reported in DRPLA. Affected individuals with almost identical repeat lengths presented very different symptoms. Both expansion and contraction in paternal transmission was encountered.  相似文献   

19.
Expansion of CTG/CAG trinucleotide repeats has been shown to cause a number of autosomal dominant cerebellar ataxias (ADCA) such as SCA1, SCA2, SCA3/ MJD, SCA6, SCA7, SCA8 and DRPLA. There is a wide variation in the clinical phenotype and prevalence of these ataxias in different populations. An analysis of ataxias in 42 Indian families indicates that SCA2 is the most frequent amongst all the ADCAs we have studied. In the SCA2 families, together with an intergenerational increase in repeat size, a horizontal increase with the birth order of the offspring was also observed, indicating an important role for parental age in repeat instability. This was strengthened by the detection of a pair of dizygotic twins with expanded alleles showing the same repeat number. Haplotype analysis indicates the presence of a common founder chromosome for the expanded allele in the Indian population. Polymorphism of CAG repeats in 135 normal individuals at the SCA loci studied showed similarity to the Caucasian population but was significantly different from the Japanese population.  相似文献   

20.
Autosomal dominant dentatorubral-pallidoluysian atrophy (DRPLA) and Machado-Joseph disease (MJD) are neurodegenerative disorders caused by CAG trinucleotide repeat expansions. An inverse correlation of age at onset with the length of the expanded CAG trinucleotide repeats has been demonstrated, and the intergenerational instability of the length of the CAG trinucleotide repeats, which is more prominent in paternal than in maternal transmissions, has been shown to underlie the basic mechanisms of anticipation in DRPLA and MJD. Our previous observations on DRPLA and MJD pedigrees, as well as a review of the literature, have suggested that the numbers of affected offspring exceed those of unaffected offspring, which is difficult to explain by the Mendelian principle of random segregation of alleles. In the present study, we analyzed the segregation patterns in 211 transmissions in 24 DRPLA pedigrees and 80 transmissions in 7 MJD pedigrees, with the diagnoses confirmed by molecular testing. Significant distortions in favor of transmission of the mutant alleles were found in male meiosis, where the mutant alleles were transmitted to 62% of all offspring in DRPLA (chi2 = 7.69; P<.01) and 73% in MJD (chi2 = 6.82; P<.01). The results were consistent with meiotic drive in DRPLA and MJD. Since more prominent meiotic instability of the length of the CAG trinucleotide repeats is observed in male meiosis than in female meiosis and meiotic drive is observed only in male meiosis, these results raise the possibility that a common molecular mechanism underlies the meiotic drive and the meiotic instability in male meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号