首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment was conducted to determine whether resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko), conferred by the Dn4 gene is affected by genetic background. This was done by comparing the yield responses to Russian wheat aphid-resistant wheat containing Dn4, derived through the backcross method, to those of the corresponding recurrent parents. Infested resistant cultivars had fewer Russian wheat aphids per tiller than infested susceptible cultivars at the Lamar and Fort Collins, CO sites but not at the Akron, CO site. At the Lamar site, resistant cultivars yielded more than the susceptible cultivars. 'Prairie Red' and 'Yumar' were more resistant than 'Prowers', especially at the higher infestation level. Resistance in these cultivars was categorized in a laboratory experiment to confirm this differential expression of resistance. Resistance in Prairie Red, 'Halt', 'Prowers 99', and Yumar was categorized at three plant growth stages. Antibiosis was expressed as reductions in maximum number of nymphs produced per 24 h and intrinsic rate of increase. The maximum number of nymphs produced per 24 h was reduced in Halt and 'Lamar'. Averaged over cultivars, the intrinsic rate of increase was less at jointing than at the seedling or tillering growth stages. Tolerance was expressed in the resistant cultivars as reduced chlorosis and leaf rolling. Growth reductions in infested Prowers 99 plants was less than the other cultivars. This study confirms that some cultivars containing Dn4 may express antibiosis and tolerance, whereas others may not show the same categories. Thus, expression is affected by genetic background.  相似文献   

2.
Plant damage and yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), were evaluated on a susceptible (TAM 107) and a resistant (RWA E1) winter wheat, Triticum aestivum L., in three Colorado locations in the 1993 and 1994 crop years. Russian wheat aphid was more abundant on TAM 107 than on RWA E1. Russian wheat aphid days per tiller were greater at the higher infestation levels. Yield losses as a result of Russian wheat aphid infestation occurred most of the time with TAM 107 but rarely with RWA E1. Seed densities were reduced at higher infestation levels in TAM 107 at two locations. Russian wheat aphids per tiller had a negative relationship to yield in TAM 107 but not in RWA E1. In TAM 107 yield decreased as aphid densities increased, but yield remained constant regardless of initial aphid abundance on RWA E1 in all environments. Seed densities were reduced at higher infestation levels in TAM 107 at two locations. The resistance conferred by the Dn4 gene seems to be an effective management approach across a range of field conditions.  相似文献   

3.
The restriction of aphid reestablishment onto plants by epigeal predators represents a critical component of integrated pest management. To further realize the potential that these predators might have in control programs, it is necessary to quantify such behavior as aphid falling rate to reveal the number of aphids that are available as potential prey. This study calculated the falling rate of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Sternorrhyncha: Aphididae), and tested whether this aphid more likely fell from wheat plants that differed between flat leaf architecture versus those with furled leaves. Specifically, the hypothesis was tested that a resistant wheat line (flat leaves) will have a higher aphid falling rate than a susceptible closely related line (furled leaves). The experiment was performed at Fort Collins and Akron, Colorado, USA, from May through July, 2008. Aphids were sampled from infested wheat rows to estimate aphid density, and sticky traps were used to capture falling aphids and to measure falling rate. Falling rates ranged from 0.7 to 69.5% in Fort Collins and from 1.4 to 59.5% in Akron. The falling rate of D. noxia was more influenced by plant growth stage than aphid densities, with the highest falling rate occurring after wheat senescence. Wheat plants with flat leaf architecture did not significantly increase aphid falling rate. Diuraphis noxia falls at a higher rate at lower aphid densities, which is when epigeal predators could have their greatest biological control impact.  相似文献   

4.
Laboratory experiments were conducted to determine categories of resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko), in three wheats, Triticum aestivum L, (PI 372129, PI 243781, and PI 222668) at Zadoks growth stages 10, 20, 30, and 40. 'TAM 107' was used as the susceptible standard. Antixenosis was observed in PI 222668 and PI 372129. Antibiosis was expressed as reduced nymphipositional period, daily nymph production, and fecundity at the jointing (Zadoks 30) and boot (Zadoks 40) stages in PI 243781 and at tillering (Zadoks 20) in TAM 107. Antibiosis, expressed as reduced intrinsic rate of increase, was observed in PI 222668 at tillering (Zadoks 20). Tolerance to chlorosis and leaf rolling was expressed in the three resistant wheats at all growth stages tested. Tiller production, floret formation, spike length and wet weight were affected by Russian wheat aphid feeding after Zadoks 10. Reduction in spike length did not occur in PI 372129 and PI 243781.  相似文献   

5.
This study was designed to categorize the resistance to the Russian wheat aphid, Diuraphis noxia (Mordvilko), resistant hard red winter wheat, Halt, as compared with susceptible wheat, TAM 107, at four different growth stages. Antixenosis was expressed in Halt at growth stage Zadoks 30. Antibiosis in Halt affected fecundity, number of aphids produced per reproductive day, maximum number of nymphs produced in one day, and intrinsic rate of increase. Fecundity was lower on Halt than TAM 107, and more nymphs were produced on both varieties at growth stage 20 than 10 and 40. Fewer nymphs were produced per reproductive day and on maximum production days by aphids reared on Halt than by those reared on TAM 107. The intrinsic rate of increase of Russian wheat aphids reared on Halt was lower than aphids reared on TAM 107. Differences in plant height and plant dry weight did not occur. Chlorosis ratings showed greater damage at the earlier stages in Halt and TAM 107 and significantly more damage in TAM 107 than Halt at growth stages 10, 20, and 30. Leaf rolling occurred on infested plants of TAM 107 at growth stages 10, 20, and 30, but not growth stage 40. Halt plants did not exhibit leaf rolling. The presence of a significant level of tolerance could make Halt compatible with other integrated pest management programs. However, care should be taken with cultivars containing evidence of antixenosis or antibiosis that could cause selective pressure on the Russian wheat aphid, potentially causing biotypes to be produced.  相似文献   

6.
Russian wheat aphid, Diuraphis noxia (Mordvilko), feeding injury on 'Betta' wheat isolines with the Dn1 and Dn2 genes was compared by assessing chlorophyll and carotenoid concentrations, and aphid fecundity. The resistant Betta isolines (i.e., Betta-Dn1 and Betta-Dn2) supported similar numbers of aphids, but had significantly fewer than the susceptible Betta wheat, indicating these lines are resistant to aphid feeding. Diuraphis noxia feeding resulted in different responses in total chlorophyll and carotenoid concentrations among the Betta wheat isolines. The infested Betta-Dn2 plants had higher levels of chlorophylls and carotenoids in comparison with uninfested plants. In contrast, infested Betta-Dn1 plants had the same level of chlorophyll and carotenoid in comparison with uninfested plants. Our data provide essential information on the effect of D. noxia feeding on chlorophyll and carotenoid concentrations for Betta wheat and its isolines with D. noxia-resistant Dn1 and Dn2 genes.  相似文献   

7.
We examined the physiological and biochemical responses of resistant ('Halt' and 'Prairie Red') and susceptible ('TAM 107') wheat, Triticum aestivum L., to injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko). Photosynthetic capacity was evaluated by measuring assimilation/internal CO2 (A/Ci) curves, chlorophyll fluorescence, chlorophyll, and nonstructural carbohydrate content. Total protein and peroxidase specific activity also were determined. No significant differences were detected in chlorophyll concentration between aphid-infested and control TAM 107 plants. The aphid-infested resistant cultivars had similar or significantly higher chlorophyll concentrations compared with their respective control plants. Measurements over time showed that infested Halt plants had delays in photosynthetic senescence, Prairie Red plants had photosynthetic rate changes that were similar to control plants, and TAM 107 plants displayed accelerated photosynthetic senescence patterns. The photochemical and nonphotochemical quenching coefficients were significantly higher in infested Halt plants compared with their respective control plants on day 3. Infested TAM 107 plants had significantly higher photochemical quenching compared with control plants at all times evaluated, and they had significantly higher nonphotochemical quenching on day 3. Throughout the experiment, infested Prairie Red plants exhibited photochemical and nonphotochemical quenching coefficient values that were not significantly different from control plants. Total protein content was not significantly different between aphid-infested and control plants for all cultivars. Differences between physiological responses of infested susceptible and resistant cultivars, particularly temporal changes in photosynthetic activity, imply that resistant Halt and Prairie Red wheat tolerate some impacts of aphid injury on photosynthetic integrity.  相似文献   

8.
9.
Genetic resistance is a useful control strategy for managing Russian wheat aphid, Diuraphis noxia (Mordvilko), in wheat, Triticum aestivum L. In 2003, a Russian wheat aphid population (denoted as biotype 2) identified in Colorado was virulent to genotypes carrying the Dn4 Russian wheat aphid resistance gene, necessitating the rapid identification and deployment of new sources of resistance. Although the Dn7 gene had shown excellent resistance to Russian wheat aphid biotypes 1 and 2 in evaluations in the greenhouse, no information is available on the amount of protection provided by Dn7 under field conditions. The objective of this study was to compare the reaction of Dn4- and Dn7-carrying spring wheat genotypes under artificial infestation by Russian wheat aphid biotype 1 in the field. Irrigated field experiments were conducted in 2003 and 2004 in a split-split plot arrangement with six replications. The whole plot treatment was infestation level (control, 1x, and 10x Russian wheat aphids), and the subplot treatment was resistance source (Dn4- and Dn7-carrying genotypes). The sub-subplot treatment consisted of side-by-side planting of resistant and susceptible genotypes. The Dn4 subplot was significantly more damaged than the Dn7 subplot in 2003, but not in 2004. Interaction effects observed in 2004 suggested an advantage of Dn7 relative to Dn4 in terms of reduced Russian wheat aphid abundance and plant damage. Deployment of the Dn7 Russian wheat aphid resistance gene should provide protection in the field comparable with that provided by the Dn4 resistance gene for management of Russian wheat aphid biotype 1.  相似文献   

10.
It is hypothesized that the interaction between aphids and plants follows a gene-for-gene model. The recent appearance of several new Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), biotypes in the United States and the differential response of wheat, Triticum aestivum L., genotypes containing different resistance genes also suggest a gene-for-gene interaction. However, aphid elicitors remain unknown. This study was conducted to identify fractionated Russian wheat aphid extracts capable of eliciting differential responses between resistant and susceptible wheat genotypes. We extracted whole soluble compounds and separated proteins and metabolites from two Russian wheat aphid biotypes (1 and 2), injected these extracts into seedlings of susceptible wheat Gamtoos (dn7) and resistant 94M370 (Dn7), and determined phenotypic and biochemical plant responses. Injections of whole extract or protein extract from both biotypes induced the typical susceptible symptom, leaf rolling, in the susceptible cultivar, but not in the resistant cultivar. Furthermore, multiple injections with protein extract from biotype 2 induced the development of chlorosis, head trapping, and stunting in susceptible wheat. Injection with metabolite, buffer, or chitin, did not produce any susceptible symptoms in either genotype. The protein extract from the two biotypes also induced significantly higher activities of three defense-response enzymes (catalase, peroxidase, and beta-glucanase) in 94M370 than in Gamtoos. These results indicate that a protein elicitor from the Russian wheat aphid is recognized by a plant receptor, and the recognition is mediated by the Dn7-gene product. The increased activities of defense-response enzymes in resistant plants after injection with the protein fraction suggest that defense response genes are induced after recognition of aphid elicitors by the plant.  相似文献   

11.
Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.  相似文献   

12.
Field experiments were conducted in 1997 and 1998 to evaluate the impact of resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko), on the cereal aphid complex in wheat. Two spring wheats were planted: the variety "Centennial" (Russian wheat aphid susceptible) and the advanced line IDO488 (Russian wheat aphid resistant). IDO488 incorporates the resistance found in PI 294994 into a Centennial background. Field plots were artificially infested with adult D. noxia and sampled weekly. The most abundant aphid species in 1997 were Metopolophium dirhodum (Walker), Sitobion avenae (F.), D. noxia, and Rhopalosiphum padi (L.). In 1998, the order of abundance was M. dirhodum, R. padi, S. avenae, and D. noxia. The resistant genotype had significantly fewer D. noxia than the susceptible one during both years. However, plant genotype had no significant effect on the other aphid species in either year. Both the initial density of D. noxia and plant growth stage, had a significant effect on D. noxia population development, but had no effect on the other aphid species. There was no interaction between D. noxia resistance and the population density of the other aphid species observed.  相似文献   

13.
Elicitors are molecules which can induce the activation of plant defence responses. Elicitor activity of intercellular wash fluid from Russian wheat aphid, Diuraphis noxia (Mordvilko) infested resistant (cv Tugela DN), and susceptible (cv Tugela), wheat (Triticum aestivum L.), was investigated. Known Russian wheat aphid resistance related responses such as peroxidase and beta-1,3-glucanase activities were used as parameters of elicitor activity. The intercellular wash fluid from infested resistant plants contains high elicitor activity while that from infested susceptible plants contains no or very little elicitor activity. After applying C-18 reverse phase and concanavalin A Sepharose chromatography, elicitor active glycoproteins were isolated from the intercellular wash fluid of Russian wheat aphid infested resistant wheat. The elicitor-active glycoproteins separated into three polypeptides during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated glycoproteins elicited peroxidase activity to higher levels in resistant than in susceptible cultivars. It was evident that the glycoproteins were probably a general elicitor of plant origin. Information gained from these studies is valuable for the development of plant activators to enhance the defence responses of plants.  相似文献   

14.
Broadening the genetic base for resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), in bread wheat, Triticum aestivum L., is desirable. To date, identified Russian wheat aphid resistance genes are either located to the D chromosomes or to rye translocation of wheat, and resistance derived from the A or B genomes of tetraploid Triticum spp. would therefore be highly beneficial. Fifty-eight synthetic hexaploid wheat, derived from interspecific crosses of Triticum dicoccum Schrank. and Aegilops tauschii (Coss.) Schmal. and their parents were evaluated for resistance to Russian wheat aphid under field conditions. Plots infested with aphids were compared with plots protected with insecticides. The T. dicoccum parents were highly resistant to Russian wheat aphids, whereas the Ae. tauschii parents were susceptible. Resistance levels observed in the synthetic hexaploids were slightly below the levels of their T. dicoccum parents when a visual damage scale was used. but no major resistance suppression was observed among the synthetics. Russian wheat aphid infestation on average reduced plant height and kernel weight at harvest in the synthetic hexaploids and the T. dicoccum parents by 3-4%, whereas the susceptible control 'Seri M82' suffered losses of above 20%. Because resistance in the synthetic hexaploid wheat is derived from their T. dicoccum parent, resistance gene(s) must be located on the A and/or B genomes. They must therefore be different from previously identified Russian wheat aphid resistance genes, which have all been located on the D genome of wheat or on translocated segments.  相似文献   

15.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

16.
The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a serious worldwide pest of wheat and barley. Russian wheat aphid populations from Hungary, Russia, and Syria have previously been identified as virulent to D. noxia (Dn) 4, the gene in all Russian wheat aphid-resistant cultivars produced in Colorado. However, the virulence of Russian wheat aphid populations from central Europe, North Africa, and South America to existing Dn genes has not been assessed. Experiments with plants containing several different Dn genes demonstrated that populations from Chile, the Czech Republic, and Ethiopia are also virulent to Dn4. The Czech population was also virulent to plants containing the Dnx gene in wheat plant introduction PI220127. The Ethiopian population was also virulent to plants containing the Dny gene in the Russian wheat aphid-resistant 'Stanton' produced in Kansas. The Chilean and Ethiopian populations were unaffected by the antibiosis resistance in Dn4 plants. There were significantly more nymphs of the Chilean population on plants of Dn4 than on Dn6 plants at both 18 and 23 d postinfestation, and the Ethiopian population attained a significantly greater weight on Dn4 plants than on plants containing Dn5 or Dn6. These newly characterized virulent Russian wheat aphid populations pose a distinct threat to existing or proposed wheat cultivars possessing Dn4.  相似文献   

17.
Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.  相似文献   

18.
Biotypes are infraspecific classifications based on biological rather than morphological characteristics. Cereal aphids are managed primarily by host plant resistance, and they often develop biotypes that injure or kill previously resistant plants. Although molecular genetic variation within aphid biotypes has been well documented, little is known about phenotypic variation, especially virulence or the biotype's ability to cause injury to cultivars with specific resistance genes. Five clones (single maternal lineages) of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), determined to be injurious to wheat, Triticum aestivum L., with the Dn4 gene, were evaluated on resistant and susceptible wheat and barley, Hordeum vulgare L., for their ability to cause chlorosis, reduction in plant height, and reduction in shoot dry weight. Variation to cause injury on resistant 'Halt' wheat, susceptible 'Jagger' wheat, and resistant 'STARS-9301B' barley was found among the Dn4 virulent clones. One clone caused up to 30.0 and 59.5% more reduction in plant height and shoot dry weight, respectively, on resistant Halt than other clones. It also caused up to 29.9 and 55.5% more reduction in plant height and shoot dry weight, respectively, on susceptible Jagger wheat. Although STARS-9301B barley exhibited an equal resistant response to feeding by all five clones based on chlorosis, two clones caused approximately 20% more reduction in plant height and shoot dry weight than three other clones. The most injurious clones on wheat were not the most injurious clones on barley. This is the first report of variation to cause varying degrees of plant damage within an aphid biotype virulent to a single host resistance gene. A single aphid clone may not accurately represent the true virulent nature of a biotype population in the field.  相似文献   

19.
The biotypic diversity of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), was assessed in five isolates collected in Colorado. Three isolates, RWA 1, RWA 2, and an isolate from Montezuma County, CO, designated RWA 6, were originally collected from cultivated wheat, Triticum aestivum L., and obtained from established colonies at Colorado State University. The fourth isolate, designated RWA 7, was collected from Canada wildrye, Elymus canadensis L., in Baca County, CO. The fifth isolate, designated RWA 8, was collected from crested wheatgrass, Agropyron cristatum (L.) Gaertn., in Montezuma County, CO. The four isolates were characterized in a standard seedling assay, by using 24 plant differentials, 22 wheat lines and two barley, Hordeum vulgare L., lines. RWA 1 was the least virulent of the isolates, killing only the four susceptible entries. RWA 8 also killed only the four susceptible entries, but it expressed intermediate virulence on seven wheat lines. RWA 6, killing nine entries, and RWA 7, killing 11 entries, both expressed an intermediate level of virulence overall, but differed in their level of virulence to 'CO03797' (Dn1), 'Yumar' (Dn4), and 'CO960293-2'. RWA 2 was the most virulent isolate, killing 14 entries, including Dn4- and Dny-containing wheat. Four wheat lines, '94M370' (Dn7), 'STARS 02RWA2414-11', CO03797, and 'CI2401', were resistant to the five isolates. The results of this screening confirm the presence of five unique Russian wheat aphid biotypes in Colorado.  相似文献   

20.
Host plant resistance can effectively manage Russian wheat aphid (Diuraphis noxia) Kurdjumov (Homoptera: Aphididae) in areas where it is an economically important pest of wheat. However, biotypes of D. noxia virulent on wheat containing resistance gene Dn4 have been reported in both the United States and South Africa. Thirty wheat genotypes, including susceptible Yuma, resistant CItr2401, as well as 25 genotypes containing Dn4 and three genotypes containing Dny were planted under greenhouse conditions in Bethlehem, South Africa, and screened with D. noxia biotype RWASA3. RWASA3 caused susceptible damage symptoms in MTRWA92‐145, Ankor, Halt, Bond CL, 18FAWWON‐SA 262, Prowers99, 18FAWWON‐SA 264, Hatcher, Yumar, Corwa and Thunder CL all reported to contain the Dn4 resistance gene. Genotypes PI586956, Stanton and 18FAWWON‐SA 257, containing the Dny‐resistance gene were susceptible to RWASA3. Similarly, coinciding development of virulence to resistance genes Dn4 and Dny was reported in the United States. However, in this study, 13 Dn4‐containing genotypes showed moderate resistance when screened with RWASA3 alluding to a more complex biotype‐gene‐interaction. These findings could indicate that Dn4 and Dny may be related and possibly share a similar or common resistance factor. Further studies will be aimed at explaining these results investigating the possibility of an allelic cluster or series for Dn4, possibly including Dny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号