首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Familial adenomatous polyposis (FAP) is associated with a number of extraintestinal manifestations, which include osteomas, epidermoid cysts, and desmoid tumors, often referred to as “Gardner syndrome.” Recent studies have suggested that some of the phenotypic features of FAP are dependent on the position of the mutation within the APC gene. In particular, the correlation between congenital hypertrophy of the retinal pigment epithelium (CHRPE) and APC genotype indicates that affected families may be divided into distinct groups. We have investigated the association between the dento-osseous features of GS on dental panoramic radiographs (DPRs) and APC genotype in a regional cohort of FAP families. DPRs were performed on 84 affected individuals from 36 families, and the dento-osseous features of FAP were quantified by a weighted scoring system. Significant DPR abnormalities were present in 69% of affected individuals. The APC gene mutation was identified in 27 of these families, and for statistical analysis these were subdivided into three groups. Group 1 comprised 18 affected individuals from seven families with mutations 5' of exon 9; these families (except one) did not express CHRPE. Groups 2 comprised 38 individuals from 16 families with mutations between exon 9 and codon 1444, all of whom expressed CHRPE. Group 3 comprised 11 individuals from four families with mutations 3' of codon 1444, none of whom expressed CHRPE. Families with mutations 3' of codon 1444 had significantly more lesions on DPRs (P < .001) and appeared to have a higher incidence of desmoid tumors. These results suggest that the severity of some of the features of Gardner syndrome may correlate with genotype in FAP.  相似文献   

2.
A variant of Freeman-Sheldon syndrome maps to 11p15.5-pter.   总被引:3,自引:0,他引:3       下载免费PDF全文
Distal arthrogryposis type 1 (DA1) and Freeman-Sheldon syndrome (FSS) are the two most common known causes of inherited multiple congenital contractures. We recently have characterized a new disorder (DA2B) with a phenotype intermediate between DA1 and FSS. We report the mapping of a gene that causes DA2B to chromosome 11p15.5-pter. Linkage analysis in a single kindred generated a positive LOD score of 5.31 at theta = 0 with the marker D11S922, and recombinants localize the gene to an approximately 3.5-6.5-cM region between the marker TH and the telomere. Analysis of additional families improves the LOD score to 6.45 at theta = 0 and suggests linkage homogeneity for DA2B.  相似文献   

3.
Familial adenomatous polyposis (FAP), a Mendelian disorder that includes familial polyposis coli (FPC) and Gardner syndrome (GS), has an autosomal dominant mode of inheritance. It is characterized by hundreds to thousands of adenomatous polyps that can progress to carcinoma of the colon, suggesting that the gene that harbors the FAP germ-line mutation may play an important role in the somatic genetic pathway to colon cancer. The defect responsible for FAP was recently mapped to the long arm of chromosome 5 by linkage between the FPC phenotype and a locus defined by DNA probe pC11p11 (D5S71), located at 5q21-22. Because an important next step in the paradigm for identification of a disease gene is to obtain a more precise localization, we isolated and mapped by linkage six additional polymorphic DNA markers in the FAP region. Subsequent linkage analysis in six pedigrees, three having the FPC phenotype and three segregating GS, placed the FAP locus very close to a new marker, YN5.48 (D5S81), that is approximately 17 centimorgans distal to C11p11 on the genetic map. The analysis revealed no evidence of genetic heterogeneity between the two phenotypes, a question that had not been clearly resolved by the earlier studies. The new set of markers in the near vicinity of the FAP locus represents a further step toward isolation of the genetic defect and provides the opportunity for preclinical diagnosis of risk status for colon cancer among individuals in families that are segregating adenomatous polyposis.  相似文献   

4.
Summary Linkage between GLO and 21-hydroxylase was investigated in 11 families with 24 children. Positive lod score values with a maximum of +1.618 at =0.05 indicate close linkage between these marker loci.  相似文献   

5.
The Coffin-Lowry syndrome (CLS) is an X-linked inherited disease of unknown pathogenesis characterized by severe mental retardation, typical facial and digital anomalies, and progressive skeletal deformations. Our previous linkage analysis, based on four pedigrees with the disease, suggested a localization for the CLS locus in Xp22.1-p22.2, with the most likely position between the marker loci DXS41 and DXS43. We have now extended the study to 16 families by using seven RFLP marker loci spanning the Xp22.1-p22.2 region. Linkage has been established with five markers from this part of the X chromosome: DXS274 (lod score [Z] (theta) = 3.53 at theta = .08), DXS43 (Z(theta) = 3.16 at theta = .08), DXS197 (Z(theta) = 3.03 at theta = .05), DXS41 (Z(theta) = 2.89 at theta = .08), and DXS207 (Z(theta) = 2.73 at theta = .13). A multipoint linkage analysis further placed, with a maximum multipoint Z of 7.30, the mutation-causing CLS within a 7-cM interval defined by the cluster of tightly linked markers (DXS207-DXS43-DXS197) on the distal side and by DXS274 on the proximal side. Thus, these further linkage data confirm and refine the map location for the gene responsible for CLS in Xp22.1-p22.2. As no linkage heterogeneity was detected, this validates the use of the Xp22.1-p22.2 markers for carrier detection and prenatal diagnosis in CLS families.  相似文献   

6.
A linkage analysis with chromosome 9 markers was performed in 33 families with Friedreich ataxia (FA). Linkage with D9S15, previously established by S. Chamberlain et al. (1988, Nature London 334:248-249) was confirmed in our sample (z(theta) = 6.82 at theta = 0.02) while INFB (interferon-beta gene) shows looser linkage. An additional marker, D9S5, was also shown to be closely linked to FA (z(theta) = 5.77 at theta = 0.00).  相似文献   

7.
Club foot is one of the most common human congenital malformations. Distal arthrogryposis type I (DA-1) is a frequent cause of dominantly inherited club foot. Performing a genomewide search using short tandem repeat (STR) polymorphisms, we have mapped a DA-1 gene to the pericentromeric region of chromosome 9 in a large kindred. Linkage analysis has generated a positive lod score of 5.90 at theta = 0, with the marker GS-4. Multiple recombinants bracketing the region have been identified. Analysis of an additional family demonstrated no linkage to the same locus, indicating likely locus heterogeneity. Of the autosomal congenital contracture disorders causing positional foot deformities, this is the first to be mapped.  相似文献   

8.
Linkage analysis with DNA probes C11P11 and pi 227 is reported in six Scottish families with familial adenomatous polyposis. Two families were informative for C11P11 and all six were at least partly informative for pi 227. Two C11P11-apc and two pi 227-apc recombinants were identified and one of these was recombinant for both C11P11-apc and pi 227-apc. A further possible combined C11P11-apc and pi 227-apc recombination event was also identified. Peak lod score for linkage of C11P11 to apc was 5.80 at a recombination fraction (theta) of 0.069 (95% probability limits 0.012-0.191) and for linkage of pi 227 to apc was 3.19 at theta = 0.110 (95% probability limits 0.023-0.286). Peak lod score for linkage of C11P11 to pi 227 was 1.79 at theta = 0.00. The data support a gene order of pi 227-C11P11-apc.  相似文献   

9.
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and defective renal tubular function. A map assignment of OCRL to Xq24-q26 has been made previously by linkage analysis with DXS42 at Xq24-q26 (theta = 0, z = 5.09) and with DXS10 at Xq26 (theta = 0, z = 6.45). Two additional families were studied and three additional polymorphisms were identified at DXS42 by using a 35-kb sequence isolated with the probe detecting the original polymorphism at DXS42. With additional OCRL families made informative for DXS42, theta remained 0 with z = 6.63; and for DXS10 theta = 0.03 and z = 7.07. Evidence for placing OCRL at Xq25 also comes from a female with Lowe syndrome and an X;3 translocation. We have used the Xq25 breakpoint in this patient to determine the position of OCRL relative to the two linked markers. Each derivative chromosome was isolated away from its normal counterpart in somatic cell hybrids. DXS42 was mapped to the derivative chromosome X containing Xpterq25, and DXS10 was mapped to the derivative chromosome 3 containing Xq25-qter. The markers DXS10 and DXS42 therefore show tight linkage with OCRL in six families and flank the Xq25 breakpoint in a female patient with an X;3 translocation. Linkage analysis with flanking markers was used to assess OCRL carrier status in women at risk. Results, when compared with carrier determination by ophthalmologic examination, indicated that the slit-lamp exam can be a sensitive and specific method of carrier determination in many cases.  相似文献   

10.
Twelve families with Wiskott-Aldrich syndrome (WAS) were studied by linkage analysis using 10 polymorphic marker loci from the X-chromosome pericentromeric region. The results confirm close linkage of WAS to the DXS14, DXS7, TIMP, and DXZ1 loci and are consistent with previous data suggesting that WAS maps to the proximal Xp and is flanked by the DXS14 and DXS7 loci. The strongest linkage (Z = 10.19 at theta = 0.00) was found to be between WAS and the hypervariable DXS255 locus, a marker locus already mapped between DXS7 and DXS14 and which was informative for all meioses included in this analysis. Linkage of the WAS to two pericentromeric Xq loci, DXS1 and PGK1, was also established. On the basis of these results, accurate predictive testing should now be feasible in the majority of WAS families.  相似文献   

11.
Autosomal dominant retinitis pigmentosa (adRP) has shown linkage to the chromosome 3q marker C17 (D3S47) in two large adRP pedigrees known as TCDM1 and adRP3. On the basis of this evidence the rhodopsin gene, which also maps to 3q, was screened for mutations which segregated with the disease in adRP patients, and several have now been identified. However, we report that, as yet, no rhodopsin mutation has been found in the families first linked to C17. Since no highly informative marker system is available in the rhodopsin gene, it has not been possible to measure the genetic distance between rhodopsin and D3S47 accurately. We now present a linkage analysis between D3S47 and the rhodopsin locus (RHO) in five proven rhodopsin-retinitis pigmentosa (rhodopsin-RP) families, using the causative mutations as highly informative polymorphic markers. The distance, between RHO and D3S47, obtained by this analysis is theta = .12, with a lod score of 4.5. This contrast with peak lod scores between D3S47 and adRP of 6.1 at theta = .05 and 16.5 at theta = 0 in families adRP3 and TCDM1, respectively. These data would be consistent with the hypothesis that TCDM1 and ADRP3 represent a second adRP locus on chromosome 3q, closer to D3S47 than is the rhodopsin locus. This result shows that care must be taken when interpreting adRP exclusion data generated with probe C17 and that it is probably not a suitable marker for predictive genetic testing in all chromosome 3q-linked adRP families.  相似文献   

12.
Genetic homogeneity of cystic fibrosis.   总被引:5,自引:1,他引:4       下载免费PDF全文
We studied large Amish/Mennonite/Hutterite kindreds that segregate cystic fibrosis (CF) for linkage between CF and the polymorphic DNA markers pJ3.11 and 7C22 located on chromosome 7. These inbred pedigrees consist of more than 300 members including 30 affected individuals. In these families, linkage between the CF locus and the chromosome 21 marker D21S5 and between CF and the marker at the met oncogene locus on chromosome 7 had been previously indicated. We now report linkage between CF and pJ3.11 (Z = 4.92, theta = 0) and between CF and 7C22 (Z = 3.42, theta = 0). Therefore, CF segregates in these large pedigrees in a manner consistent with data from smaller outbred families with respect to the markers on chromosome 7 closest to CF. These data are consistent with locus homogeneity for the defect causing CF in the populations that have been examined to date.  相似文献   

13.
The linkage of polymorphic DNA markers on chromosome 7 to cystic fibrosis (CF) was examined in two pedigrees and a number of smaller nuclear families. The pedigrees are multigenerational and together consist of more than 300 members including 30 affected individuals, while the nuclear families each have two generations and either two or three children with CF. Tight linkage was observed between the CF locus and the met oncogene locus theta = 0, zeta = 15.45), pJ3.11 (theta = 0, zeta = 10.07), and 7C22 (theta = 0, zeta = 6.64) in both the pedigrees and nuclear families with no evidence for recombination between CF and any of the DNA markers. Weaker linkage between the CF locus and the locus for the serum enzyme activity marker paraoxonase (PON) was detected, theta = 0.18, zeta = 0.76. The two pedigrees were sufficiently informative to detect significant linkage between CF and each of the three DNA markers previously shown to be tightly linked to the CF locus. These results establish a locus for CF in these pedigrees in the region of chromosome 7 nearest the three DNA markers met, pJ3.11, and 7C22 and are consistent with locus homogeneity for the defect causing CF in these populations and others that have been examined to date.  相似文献   

14.
Leber hereditary optic neuroretinopathy (LHON) is a maternally inherited disease, probably transmitted by mutations in mtDNA. The variation in the clinical expression of the disease among family members has remained unexplained, but pedigree data suggest an involvement of an X-chromosomal factor. We have studied genetic linkage of the liability to develop optic atrophy to 15 polymorphic markers on the X chromosome in six pedigrees with LHON. The results show evidence of linkage to the locus DXS7 on the proximal Xp. Tight linkage to the other marker loci was excluded. Multipoint linkage analysis placed the liability locus at DXS7 with a maximum lod score (Zmax) of 2.48 at a recombination fraction (theta) of .0 and with a Zmax - 1 support interval theta = .09 distal to theta = .07 proximal of DXS7. No evidence of heterogeneity was found among different types of families, with or without a known mtDNA mutation associated with LHON.  相似文献   

15.
Autosomal dominant osteogenesis imperfecta (OI) is a heterogeneous group of disorders. Molecular haplotypes associated with the pro alpha 2(I) gene of human type I procollagen were used for genetic linkage studies in a group of 10 families with OI. The clinical phenotypes of the families studied were those of OI type I and OI type IV. Evidence for linkage was highly suggestive in the four families with OI type IV (Z = 3.91 for theta = 0). In contrast, little or no indication for linkage was found in the six families with OI type I (Z = .055 for theta = .415). Heterogeneity between the two groups of families was highly significant (chi 2 = 11.14, P = .0008), suggesting that at least two separate gene defects may be the cause of the autosomal dominant forms of OI.  相似文献   

16.
Mutations in the adenomatous polyposis coli (APC) gene are responsible for the disease familial adenomatous polyposis (FAP), a dominantly inherited predispostion to colorectal cancer. The most common extra-colonic manifestation is congenital hypertrophy of the retinal pigment epithelium (CHRPE), expressed in up to 90% of FAP kindreds. Chain-terminating APC mutations were characterised in 26 unrelated FAP patients. Results show that CHRPE expression is determined by the length of truncated protein product. CHRPE is therefore the first extracolonic manifestation of FAP to be shown to be under the control of the APC mutation site and should facilitate the detection of constitutional APC mutations in FAP kindreds.  相似文献   

17.
Linkage analysis in French-Canadian families with vitamin D dependency type I (VDD1) demonstrated that the gene responsible for the disease is linked to polymorphic RFLP markers in the 12q14 region. We studied 76 subjects in 14 sibships which included 17 affected individuals and 17 obligate heterozygotes. Significant results for linkage were obtained with the D12S17 locus at the male recombination fraction (theta m) .018 (Z[theta m theta f] = 3.20) and with D126 at (theta m = .025 (Z[theta m theta f] = 3.07). Multipoint linkage analysis and studies of haplotypes and recombinants strongly suggest the localization of the VDD1 locus between the collagen type II alpha 1 (COL2A1) locus and clustered loci D12S14, D12S17, and D12S6, which segregate as a three-marker haplotype. Linkage disequilibrium between VDD1 and this three-marker haplotype supports the notion of a founder effect in the studied population. The current status of the localization of the disease allows for carrier detection in the families at risk.  相似文献   

18.
Combining data from a genomic screen in 70 families with a high risk for prostate cancer (PC) with data from candidate-region mapping in these families and an additional 71 families, we have localized a potential hereditary PC-susceptibility locus to chromosome 1p36. Because an excess of cases of primary brain cancer (BC) have been observed in some studies of families with a high risk for PC, and because loss of heterozygosity at 1p36 is frequently observed in BC, we further evaluated 12 families with both a history of PC and a blood relative with primary BC. The overall LOD score in these 12 families was 3.22 at a recombination fraction (theta) of .06, with marker D1S507. On the basis of an a priori hypothesis, this group was stratified by age at diagnosis of PC. In the younger age group (mean age at diagnosis <66 years), a maximum two-point LOD score of 3.65 at straight theta = .0 was observed, with D1S407. This linkage was rejected in both early- and late-onset families without a history of BC (LOD scores -7.12 and -6.03, respectively, at straight theta = .0). After exclusion of 3 of the 12 families that had better evidence of linkage to previously described PC-susceptibility loci, linkage to the 1p36 region was suggested by a two-point LOD score of 4.74 at straight theta = .0, with marker D1S407. We conclude that a significant proportion of these families with both a high risk for PC and a family member with BC show linkage to the 1p36 region.  相似文献   

19.
Classical studies have demonstrated genetic heterogeneity for nonsyndromic autosomal recessive congenital neurosensory deafness, with at least six loci postulated. Linkage analysis in two consanguineous Tunisian kindreds has demonstrated that one such deafness locus, DFNB1, maps near chromosome 13 markers D13S175, D13S143, and D13S115. We tested these markers for cosegregation with deafness in 18 New Zealand and 1 Australian nonconsanguineous kindreds, each of which included at least two siblings with nonsyndromic presumed congenital sensorineural deafness and that had a pedigree structure consistent with autosomal recessive inheritance. When all families were combined, a peak two-point lod score of 2.547 (theta = .1) was obtained for D13S175, 0.780 (theta = .2) for D13S143, and 0.664 (theta = .3) for D13S115. While there was no statistically significant evidence for heterogeneity at any of the three loci tested, nine families showed cosegregation of marker haplotypes with deafness. These observations suggest that the DFNB1 locus may make an important contribution to autosomal recessive neurosensory deafness in a Caucasian population. In the nine cosegregating families, phenotypic variation was observed both within sibships (in four families), which indicates that variable expressivity characterizes some genotypes at the DFNB1 locus, and between generations (in two families), which suggests allelic heterogeneity.  相似文献   

20.
Genetic linkage studies were performed in 22 families with von Hippel-Lindau (VHL) disease by using polymorphic DNA markers from distal chromosome 3p. Linkage was detected between VHL disease and the markers D3S18 (Zmax = 6.6 at theta = 0.0, confidence interval (CI) 0.00-0.06), RAF1 (Zmax = 5.9 at theta = 0.06, CI 0.01-0.16), and THRB (Zmax 3.4 at theta = 0.11). Multipoint linkage analysis localized the VHL disease gene within a small region (approximately 8 cM) of 3p25-p26 between RAF1 and (D3S191, D3S225) and close to the D3S18 locus. There was no evidence of locus heterogeneity, and families with and without pheochromocytoma showed linkage to D3S18. The identification of DNA markers flanking the VHL disease gene allows reliable presymptomatic and prenatal diagnosis to be offered to informative families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号