首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To assess how heterotrophic microorganisms may alter their activities and thus their CO2‐C return to the atmosphere with elevated CO2 and changing N availability, we examined soil organic matter (SOM) dynamics at the Duke Free Air Carbon Enrichment (FACE) site, after N fertilizer was applied. We measured heterotrophic respiration during early and late stages of SOM mineralization in soil incubations to capture activity on relatively labile and refractory SOM pools. We also measured δ13C of respired CO2‐C and phospholipid fatty acids (PLFAs) during early mineralization stages to track the microbial groups involved in substrate use. We calculated , a measure of δ13CPLFA normalized by respired δ13CO2, to assess microbial function with C substrates formed with elevated CO2 and altered N availability, via the distinct δ13C of the supplemental CO2. We also quantified extracellular enzyme activity (EEA) during labile and recalcitrant SOM mineralization. Early in the incubations, increased N availability reduced heterotrophic CO2‐C release. By the later stages of SOM mineralization, elevated CO2 soils with fertilization had respired 72% of the CO2‐C respired by all other soils. values suggest that fungi in elevated CO2 plots took up C substrates possessing the δ13C signature of recently formed SOM, and added N promoted the activity of Gram‐negative bacteria and reduced that of Gram‐positive bacteria, particularly actinomycetes. Consistent with this, the enzyme responsible for the degradation of peptidoglycan and chitin, compounds produced by Gram‐positive bacteria and fungi, respectively, experienced a decline in activity with N fertilization. If patterns observed in this study with N additions are reversed with progressive N limitation at this site, actinomycetes and other Gram‐positive bacteria responsible for mineralizing relatively recalcitrant substrates may experience increases in their activity. Such shifts in microbial functioning may result in increased turnover of, and C release from, relatively decay‐resistant material.  相似文献   

2.
Our objectives were to quantify and compare soil CO2 efflux of two dominant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental factors on CO2 release. We measured soil CO2 efflux from eight permanent soil chambers on six Oxisol sites. Three sites were developed on old river terraces (old alluvium) and the other three were developed on old lava flows (residual). At the same time we measured soil CO2 concentrations, soil water content and soil temperature at various depths in 6 soil shafts (3 m deep). Between old alluvium sites, the two-year average CO2 flux rates ranged from 117.3 to 128.9 mg C m–2 h–1. Significantly higher soil CO2 flux occurred on the residual sites (141.1 to 184.2 mg C m–2 h–1). Spatial differences in CO2 efflux were related to fine root biomass, soil carbon and phosphorus concentration but also to soil water content. Spatial variability in CO2 storage was high and the amount of CO2 stored in the upper and lower soil profile was different between old alluvial and residual sites. The major factor identified for explaining temporal variations in soil CO2 efflux was soil water content. During periods of high soil water content CO2 emission decreased, probably due to lower diffusion and CO2 production rates. During the 2-year study period inter-annual variation in soil CO2 efflux was not detected.  相似文献   

3.
4.
The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin‐binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic “R&R” chitin‐binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc‐containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full‐length BmWCP4 protein, “R&R” CBD peptide (CBD), non‐CBD peptide (BmWCP4‐CBD?), four single site‐directed mutated peptides (M1, M2, M3 and M4) and four‐sites‐mutated peptide (MF) were generated and purified, respectively, for in vitro chitin‐binding assay. The results indicated that both the full‐length protein and the “R&R” CBD peptide could bind with chitin, whereas the BmWCP4‐CBD? could not bind with chitin. The single residue mutants M1, M2, M3 and M4 reduced but did not completely abolish the chitin‐binding activity, while four‐sites‐mutated protein MF completely lost the chitin‐binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva‐to‐pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein.  相似文献   

5.
A coupled circadian oscillator model for the insect photoperiodic clock is described which consists of a hierarchically arranged pacemaker and slave. The pacemaker is self-sustained, temperature compensated, and entrainable by the light cycle; the slave is a damping oscillation receiving entrainment from two sources, from the pacemaker via a coupling factor, and also directly from the light. The damping slave oscillation is seen as the photoperiodic oscillator, equivalent to that proposed earlier by Lewis and Saunders (1987). The present simulations describe the effect of the strength of the coupling factor between hypothetical short- and long-period pacemaker oscillations (modelled on the clock mutants per sand per L2in Drosophila melanogaster) and a slave oscillation with a period of about 24 hours. The output is presented in terms of photoperiodic response curves and Nanda-Hamner, or resonance, plots. With a high coupling strength, the pacemakers strongly entrain the slave, but with a low coupling strength the slave's properties are more evident. The model is presented as a possible explanation for recent ovarian diapause data in D. melanogaster clock mutants (Saunders 1990), but also as a more general model for the role of the insect circadian system in seasonal time measurement.  相似文献   

6.
Measurements were made of the concentration and stable oxygen isotopic ratio of carbon dioxide in air samples collected on a diurnal basis at two heights within a Pinus resinosa canopy. Large changes in CO2 concentration and isotopic composition were observed during diurnal time courses on all three symple dates. In addition, there was strong vertical stratification in the forest canopy, with higher CO2 concentrations and more negative 18O values observed closer to the soil surface. The observed daily increases in 18O values of forest CO2 were dependent on relative humidity consistent with the modelled predictions of isotopic fractionation during photosynthetic gas exchange. During photosynthetic gas exchange, a portion of the CO2 that enters the leaf and equilibrates with leaf water is not fixed and diffuses back out of the leaf with an altered oxygen isotopic ratio. The oxygen isotope ratio of CO2 diffusing out of a leaf depends primarily on the 18O content of leaf water which changes in response to relative humidity. In contrast, soil respiration caused a decline in the 18O values of forest CO2 at night, because CO2 released from the soil has equilibrated with soil water which has a lower 18O content than leaf water. The observed relationship between diurnal changes in CO2 concentration and oxygen isotopic composition in the forest environment were consistent with a gas mixing model that considered the relative magnitudes of CO2 fluxes associated with photosynthesis, respiration and turbulent exchange between the forest and the bulk atmosphere.  相似文献   

7.
Glyoxylate decarboxylation during photorespiration   总被引:4,自引:0,他引:4  
Bernard Grodzinski 《Planta》1978,144(1):31-37
At 25° C under aerobic conditions with or without gluamate 10% of the [1-14C]glycollate oxidised in spinach leaf peroxisomes was released as 14CO2. Without glutamate only 5% of the glycollate was converted to glycine, but with it over 80% of the glycollate was metabolised to glycine. CO2 release was probably not due to glycine breakdown in these preparations since glycine decarboxylase activity was not detected. Addition of either unlabelled glycine or isonicotinyl hydrazide (INH) did not reduce 14CO2 release from either [1-14C]glycollate or [1-14C]glyoxylate. Furthermore, the amount of available H2O2 (Grodzinski and Butt, 1976) was sufficient to account for all of the CO2 release by breakdown of glyoxylate. Peroxisomal glycollate metabolism was unaffected by light and isolated leaf chloroplasts alone did not metabolise glycollate. However, in a mixture of peroxisomes and illuminated chloroplasts the rate of glycollate decarboxylation increased three fold while glycine synthesis was reduced by 40%. Although it was not possible to measure available H2O2 directly, the data are best explained by glyoxylate decarboxylation. Catalase reduced CO2 release and enhanced glycine synthesis. In addition, when a model system in which an active preparation of purified glucose oxidase generating H2O2 at a known rate was used to replace the chloroplasts, similar rates of 14CO2 release and [14C]glycine synthesis from [1-14C]glycollate were measured. It is argued that in vivo glyoxylate metabolism in leaf peroxisomes is a key branch point of the glycollate pathway and that a portion of the photorespired CO2 arises during glyoxylate decarboxylation under the action of H2O2. The possibility that peroxisomal catalase exerts a peroxidative function during this process is discussed.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - INH isonicotinylhydrazide - PHMS pyridyl-2-yl--hydroxymethane sulphonic acid  相似文献   

8.
The hand blood flow ( ) was investigated in response to a wide range of general and local cutaneous thermal stimuli (0–36°C and 4–42°C respectively), the local stimulus consisting of a thermostatically controlled water bath for the right hand (Tw), and the general stimulus, the ambient room temperature (Ta). was measured at the right wrist by strain gauge plethysmography; it was seen to respond more significantly to variations in Tw than to those in Ta at cold to comfortable ambient temperatures (Ta<22°C). A paradoxical vasodilatation was observed at Tw=4°C (Lewis' hunting phenomenon). The graphs of versus T at average to high local cutaneous temperatures (Tw > 33°C) are remarkably similar, except for an upward shift at successively higher values of Tw. The slope (or vasomotor reactivity) is interpreted as being controlled by variations in Ta. The curves exhibited maximum values at Ta = 31°C. Their subsequent decrease could represent a thermoregulatory adaptation to environment-organism heat transfer, the relative vasoconstriction tending to reduce the transfer. Although the qualitative response was the same for both sexes, the absolute value of was generally greater in male than in female subjects.  相似文献   

9.
The paramagnetic susceptibility () tensors of the oxidized forms of thermophile Hydrogenobacter thermophilus cytochrome c552 (Ht cyt c552) and a quintuple mutant (F7A/V13 M/F34Y/E43Y/V78I; qm) of mesophile Pseudomonas aeruginosa cytochrome c551 (Pa cyt c551) have been determined on the basis of the redox-dependent 1H NMR shift changes of the main-chain NH and CH proton resonances of non-coordinated amino acid residues and the NMR structures of the reduced forms of the corresponding proteins (J. Hasegawa, T. Yoshida, T. Yamazaki, Y. Sambongi, Y. Yu, Y. Igarashi, T. Kodama, K. Yamazaki, Y. Kyogoku, Y. Kobayashi (1998) Biochemistry 37:9641–9649; J. Hasegawa, S. Uchiyama, Y. Tanimoto, M. Mizutani, Y. Kobayashi, Y. Sambongi,Y. Igarashi (2000) J Biol Chem 275:37824–37828). From the tensors determined, we obtained the contact shifts for heme methyl proton resonances, which provided the heme electronic structures of the oxidized forms of Ht cyt c552 and qm. We also characterized the heme electronic structure of the cyanide adducts of the proteins, where the axial Met was replaced by an exogenous cyanide ion, through the analysis of 1H NMR spectra. The results indicated that the heme electronic structures of both the proteins in their oxidized forms with axial His and Met coordination are largely different to each other, while those in their cyanide adducts are similar to each other. These results demonstrated that the orientation of the axial Met sulfur lone pair, with respect to heme, predominantly contributes to the spin delocalization into the porphyrin- system of heme in the oxidized proteins with axial His and Met coordination.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations COSY correlation spectroscopy - DQF-COSY double quantum filtered COSY - TOCSY total correlation spectroscopy - NOE nuclear Overhauser effect - NOESY nuclear Overhauser effect correlated spectroscopy - Cyt c cytochrome c - Pa cyt c551 Pseudomonas aeruginosa cytochrome c551 - Ht cyt c552 Hydrogenobacter thermophilus cytochrome c552 - obs observed shift - para paramagnetic shift - dia diamagnetic shift - con contact shift - pc pseudo-contact shift  相似文献   

10.
The potentials for sequential reduction of inorganic electron acceptors and production of methane have been examined in sixteen rice soils obtained from China, the Philippines, and Italy. Methane, CO2, Fe(II), NO 3 - , SO 4 2 , pH, Eh, H2 and acetate were monitored during anaerobic incubation at 30 °C for 120 days. Based on the accumulation patterns of CO2 and CH4, the reduction process was divided into three distinct phases: (1) an initial reduction phase during which most of the inorganic electron acceptors were depleted and CO2 production was at its maximum, (2) a methanogenic phase during which CH4 production was initiated and reached its highest rate, and (3) a steady state phase with constant production rates of CH4 and CO2. The reduction phases lasted for 19 to 75 days with maximum CO2 production of 2.3 to 10.9 mol d-1 g-1 dry soil. Methane production started after 2 to 87 days and became constant after about 38--68 days (one soil >120 days). The maximum CH4 production rates ranged between 0.01 and 3.08 mol d-1 g-1. During steady state the constant CH4 and CO2 production rates varied from 0.07 to 0.30 mol d-1 g-1 and 0.02 and 0.28 mol d-1 g-1, respectively. Within the 120 d of anaerobic incubation only 6--17% of the total soil organic carbon was released into the gas phase. The gaseous carbon released consisted of 61--100% CO2, <0.1--35% CH4, and <5% nonmethane hydrocarbons. Associated with the reduction of available Fe(III) most of the CO2 was produced during the reduction phase. The electron transfer was balanced between total CO2 produced and both CH4 formed and Fe(III), sulfate and nitrate reduced. Maximum CH4 production rate (r = 0.891) and total CH4 produced (r = 0.775) correlated best with the ratio of soil nitrogen to electron acceptors. Total nitrogen content was a better indicator for available organic substrates than the total organic carbon content. The redox potential was not a good predictor of potential CH4 production. These observations indicate that the availability of degradable organic substrates mainly controls the CH4 production in the absence of inorganic electron acceptors.  相似文献   

11.
In agroecosystems, there is likely to be a strong interaction between global change and management that will determine whether soil will be a source or sink for atmospheric C. We conducted a simulation study of changes in soil C as a function of climate and CO2 change, for a suite of different management systems, at four locations representing a climate sequence in the central Great Plains of the US.Climate, CO2 and management interactions were analyzed for three agroecosystems: a conventional winter wheat-summer fallow rotation, a wheat-corn-fallow rotation and continuous cropping with wheat. Model analyses included soil C responses to changes in the amount and distribution of precipitation and responses to changes in temperature, precipitation and CO2 as projected by a general circulation model for a 2 × CO2 scenario.Overall, differences between management systems at all the sites were greater than those induced by perturbations of climate and/or CO2. Crop residue production was increased by CO2 enrichment and by a changed climate. Where the frequency of summer fallowing was reduced (wheat-corn-fallow) or eliminated (continuous wheat), soil C increased under all conditions, particularly with increased (640 L L–1) CO2. For wheat-fallow management, the model predicted declines in soil C under both ambient conditions and with climate change alone. Increased CO2 with wheat-fallow management yielded small gains in soil C at three of the sites and reduced losses at the fourth site.Our results illustrate the importance of considering the role of management in determining potential responses of agroecosystems to global change. Changes in climate will determine changes in management as farmers strive to maximize profitability. Therefore, changes in soil C may be a complex function of climate driving management and management driving soil C levels and not be a simple direct effect of either climate or management.  相似文献   

12.
The delayed logistic equation is analyzed using the averaging method. Using the transformation of coordinates v=ln N/K it is shown that the first order term in perturbation theory yields N=K exp(r * cos t/2) when the delay time T exceeds some critical value T c. The amplitude r* is equal to (40/3 – 2)1/2 and is an expansion parameter that is proportional to (T – Tc). Comparison of the exponential solution of N and numerical results for the ratio N maximum/N minimum provides a good fit for values of larger than the results using the N coordinate as the perturbed coordinate.  相似文献   

13.
A technique was developed for synchronization ofHyphomicrobium sp. strain B-522. Bacteria were grown in continuous culture with methanol (0.1%; v/v) growth limiting. Vitamin B12 (2.5 g/l) was necessary to obtain steady state growth. The critical dilution rate wasD c =0.112; maximum cell output occurred atD=0.105 (Dx=30 mg l-1 h-1). Continuous cultures ofHyphomicrobium B-522 atD=0.110 were used to obtain cells for synchronization experiments. Synchronization was achieved by trapping young hyphal and budding cells in a glass wool column, while the initial swarmer cells were allowed to pass through. By semicontinuously rinsing the system, newly produced swarmers could be sampled in the effluent. The mean length of these synchronous swarmer cells was 1.25 m (s=±0.13 m; range 0,6 m) as compared to 1.40 m (s=±0.21 m; range 1.2 m) for swarmer cells of the continuous culture. Division of synchronous swarmer populations was completed after 7 h; the synchronization index was 0.76.  相似文献   

14.
We here show an example of morphological novelties, which have evolved from insect wings into the specific structures controlling social behaviour in an ant species. Most ant colonies consist of winged queen(s) and wingless workers. In the queenless ponerine ant Diacamma sp. from Japan, however, all female workers have a pair of small thoracic appendages, called gemmae, which are homologous to the forewings and acts as an organ regulating altruism expression. Most workers, whose gemmae are clipped off by other colony members, become nonreproductive helpers, while only a single individual with complete gemmae becomes functionally reproductive. We examined histologically the development of gemmae, and compared it with that of functional wings in males. Female larvae had well-developed wing discs for both fore- and hindwings. At pupation, however, the wing discs started to evaginate and later degenerate. The hindwing discs completely degenerated, while the degeneration of forewing discs was incomplete, leading to the formation of gemmae. The degeneration process involved apoptotic cell death as confirmed by TUNEL assay. In addition, glandular cells differentiated from the epithelial cells of the forewing buds after completion of pupation. The mechanism of developmental transition from wing to gemma can be regarded as an evolutionary gain of new function, which can be seen in insect appendages and vertebrate limbs.Edited by P. Simpson  相似文献   

15.
Summary Wing imaginal discs isolated from last instar larvae of the Indian meal moth,Plodia interpunctella, produced chitin when incubated in vitro with 2×10–7 M 20-hydroxyecdysone. Chitin biosynthesis was initiated 8 h after the conclusion of a 24-h treatment with hormone. Simulataneous incubation of wing discs with 20-hydroxyecdysone and either inhibitors of RNA synthesis (alpha-amanitin, actinomycin-D) or inhibitors of protein systhesis (cycloheximide, puromycin) prevented chitin biosynthesis. We conclude from our results that RNA and protein synthesis must continue undiminished during the hormone-contact period, and that synthesis of protein, but not of new RNA is required during the posthormone culture period. Our findings are consistent with the hypothesis that ecdysteroids stimulate insect metamorphosis by promoting the synthesis of new RNA and protein during a hormone-dependent phase followed by hormone-independent protein synthesis.  相似文献   

16.
The stable isotopic composition of soil water is controlled by precipitation inputs, antecedent conditions, and evaporative losses. Because transpiration does not fractionate soil water isotopes, the relative proportions of evaporation and transpiration can be estimated using a simple isotopic mass balance approach. At our site in the shortgrass steppe in semi-arid northeastern Colorado, 18O values of soil water were almost always more enriched than those of precipitation inputs, owing to evaporative losses. The proportion of water lost by evaporation (E/ET) during the growing season ranged from nil to about 40% (to >90% in the dormant season), and was related to the timing of precipitation inputs. The sum of transpiration plus evaporation losses estimated by isotopic mass balance were similar to actual evapotranspiration measured from a nearby Bowen ratio system. We also investigated the evapotranspiration response of this mixed C3/C4 grassland to doubled atmospheric [CO2] using Open-Top Chambers (OTC). Elevated atmospheric [CO2] led to increased soil-water conservation via reduced stomatal conductance, despite greater biomass growth. We used a non-invasive method to measure the 18O of soil CO2 as a proxy for soil water, after establishing a strong relationship between 18O of soil CO2 from non-chambered control (NC) plots and 18O of soil–water from an adjacent area of native grassland. Soil–CO2 18O values showed significant treatment effects, particularly during a dry summer: values in ambient chambers (AC) were more enriched than in NC and elevated chamber (EC) plots. During the dry growing season of 2000, transpiration from the EC treatment was higher than from AC and lower than from NC treatments, but during 2001, transpiration was similar on all three treatments. Slightly higher evaporation rates from AC than either EC or NC treatments in 2000 may have resulted from increased convection across the soil surface from the OTC blowers, combined with lower biomass and litter cover on the AC treatment. Transpiration-use efficiency, or the amount of above-ground biomass produced per mm water transpired, was always greatest on EC and lowest on NC treatments.  相似文献   

17.
The dynamics of assimilation of chitin by soil microorganisms (primarily prokaryotes) as a source of carbon and nitrogen has been determined by gas chromatography and fluorescence microscopy. The highest rates of chitin decomposition in chernozem were detected at humidity levels corresponding to the pressure of soil moisture (P) of ?1.4 atm. The rate of microbial consumption of chitin is three times higher than that of the carbon of soil organic matter. Fluorescence microscopy revealed that an increase in the pressure of soil moisture from P = ?10 atm to P = ?0.7 atm resulted in a considerable increase in the proportion of the specific surface of mycelial bacteria (actinomycetes).  相似文献   

18.
Summary The characteristics of the photosynthetic apparatus of 11 Hawaiian Euphorbia species, all of which possess C4 photosynthesis but range from arid habitat, drought-deciduous shrubs to mesic or wet forest evergreen trees and shrubs, were investigated under uniform greenhouse conditions. Nine species exhibited CO2 response curves typical of C4 plants, but differed markedly in photosynthetic capacity. Light-saturated CO2 uptake rates ranged from 48 to 52 mol m-2 s-1 in arid habitat species to 18 to 20 mol m-2 s-1 in mesic and wet forest species. Two possessed unusual CO2 response curves in which photosynthesis was not saturated above intercellular CO2 pressures [p(CO2)] of 10 to 15 Pa, as typically occurs in C4 plants.Both leaf (g1) and mesophyll (gm) conductances to CO2 varied widely between species. At an atmospheric p(CO2) of 32 Pa, g1 regulated intercellular p(CO2) at 12–15 Pa in most species, which supported nearly maximum CO2 uptake rates, but did not result in excessive transpiration. Intercellular p(CO2) was higher in the two species with unusual CO2 response curves. This was especially apparent in E. remyi, which is native to a bog habitat. The regulation of g1 and intercellular p(CO2) yielded high photosynthetic water use efficiencies (P/E) in the species with typical CO2 response curves, whereas P/E was much lower in E. remyi.Photosynthetic capacity was closely related to leaf nitrogen content, whereas correlations with leaf morphological characteristics and leaf cell surface area were not significant. Thus, differences in photosynthetic capacity may be determined primarily by investment in the biochemical components of the photosynthetic apparatus rather than by differences in diffusion limitations. The lower photosynthetic capacities in the wet habitat species may reflect the lower light availability. However, other factors, such as reduced nutrient availability, may also be important.  相似文献   

19.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   

20.
Summary This work reports on the production and yield assessment of F1 wheat hybrids from crosses between cytoplasmic male sterile lines, with Triticum timopheevi cytoplasm, and cultivars with fertility restoring genes.In four years of trials conducted between 1974 and 1977, only three F1 hybrids out of a total of 168 yielded significantly more than the control variety Maris Huntsman, which currently occupies a substantial proportion of the area planted with winter wheat in the UK. Because of the rapid increase in yield of conventional wheat varieties, which has already led to varieties which outyielded Maris Huntsman, the yield advantage of these F1 hybrids is insufficient for them to be developed as commercial varieties.The efficient production of uncontaminated male sterile and F1 seed presents problems of isolation and a difficult biological problem in increasing the cross breeding potential of maintainer and restorer lines. These together with selection for other parental characters such as restoration, short straw and resistance to sprouting make the development of F1 hybrids more difficult and expensive than that of conventional varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号