首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low doses of estradiol, administered as pulses, are as effective as higher doses for priming ovariectomized (OVX) guinea pigs to display progesterone-facilitated lordosis. High doses of estradiol, administered by constant-release implants, induce progestin receptors in many substance P-immunoreactive (SP-IR) neurons in the ventrolateral hypothalamus (VLH), a site at which estradiol primes OVX guinea pigs to respond behaviorally to progesterone. To test the hypothesis that behaviorally effective estradiol pulses induce progestin receptors selectively in substance P-containing neurons in the VLH, OVX females received estradiol implants 1 week prior to perfusion, or two pulses of estradiol- 17β, injected 39 and 11 h before perfusion. Colchicine was administered intracerebroventricularly prior to perfusion. No significant differences were observed in the total number of progestin receptor-immunoreactive (PR-IR) or substance P-immunoreactive cells in the VLH and VLH/ventromedial hypothalamus (VMH), respectively, of females receiving the two estradiol treatments. However, the percentage of PR-IR cells in the VLH also immunoreactive for SP was significantly higher in the estradiol pulse-treated (53%), than in the estradiol capsule-implanted animals (36%). These data suggest that behaviorally effective estradiol pulses induce progestin receptors selectively in substance P-containing neurons in the VLH and are consistent with the hypothesis that substance P is involved in progesterone-facilitated lordosis in guinea pigs.  相似文献   

2.
Pulsatile administration of estradiol effectively primes orchidectomized (ORCH) male guinea pigs to display progesterone-facilitated lordosis. In contrast, a single injection of estradiol benzoate (EB) is not behaviorally effective. In ovariectomized female guinea pigs, estradiol pulses induce progestin receptors selectively in substance P neurons in the ventrolateral hypothalamus (VLH), a site at which estradiol primes females to respond behaviorally to progesterone. To test the hypothesis that behaviorally effective estradiol pulses induce progestin receptors selectively in substance P neurons in the VLH in males, ORCH animals received a single injection of EB 40 h before, or two pulses of estradiol-17 beta, 39 and 11 h before perfusion. Colchicine was administered intracerebroventricularly prior to perfusion. The only difference found between the two estradiol treatment groups was a higher number of progestin receptor-immunoreactive (PR-IR) cells in the rostral VLH of estradiol pulse-treated males. There were no significant differences in the number of PR-IR cells in the mid- or caudal VLH, nor in the number of substance P-immunoreactive (SP-IR) neurons in the VLH/ventromedial hypothalamus (VMH) of animals receiving the two estradiol treatments. Furthermore, the percentage of PR-IR cells in the VLH also immunoreactive for SP did not differ between the estradiol pulse- (22%-25%) and the EB-injected animals (22%-32%). These data do not support the hypothesis that administration of behaviorally effective estradiol pulses, as compared to behaviorally ineffective EB injections, induce progestin receptors selectively in substance P neurons in the VLH of male guinea pigs.  相似文献   

3.
Pulsatile administration of estradiol effectively primes orchidectomized (ORCH) male guinea pigs to display progesterone-facilitated lordosis. In contrast, a single injection of estradiol benzoate (EB) is not behaviorally effective. In ovariectomized female guinea pigs, estradiol pulses induce progestin receptors selectively in substance P neurons in the ventrolateral hypothalamus (VLH), a site at which estradiol primes females to respond behaviorally to progesterone. To test the hypothesis that behaviorally effective estradiol pulses induce progestin receptors selectively in substance P neurons in the VLH in males, ORCH animals received a single injection of EB 40 h before, or two pulses of estradiol-17β, 39 and 11 h before perfusion. Colchicine was administered intracerebroventricularly prior to perfusion. The only difference found between the two estradiol treatment groups was a higher number of progestin receptorimmunoreactive (PR-IR) cells in the rostral VLH of estradiol pulse-treated males. There were no significant differences in the number of PR-IR cells in the mid- or caudal VLH, nor in the number of substance P-immunoreactive (SP-IR) neurons in the VLH/ventromedial hypothalamus (VMH) of animals receiving the two estradiol treatments. Furthermore, the percentage of PR-IR cells in the VLH also immunoreactive for SP did not differ between the estradiol pulse- (22%–25%) and the EB-injected animals (22%–32%). These data do not support the hypothesis that administration of behaviorally effective estradiol pulses, as compared to behaviorally ineffective EB injections, induce progestin receptors selectively in substance P neurons in the VLH of male guinea pigs.  相似文献   

4.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either beta-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17 beta to induce high levels of progestin receptors, and injected intracerebroventricularly with colchicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by beta-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many beta-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by beta-endorphin and/or enkephalin.  相似文献   

5.
The inability of young female guinea pigs to display progesterone-facilitated lordosis has been attributed, in part, to a deficiency in the concentration of hypothalamic estradiol-induced progestin receptors, as measured by in vitro binding assays. An immunocytochemical technique was used to ascertain where, within the mediobasal hypothalamus, estradiol-induced progestin receptor levels are lower in immature than in adult females. Adult (greater than 7 weeks) and juvenile (3 weeks) ovariectomized females received 10 micrograms estradiol benzoate, a dose that primes adult, but not immature females to respond behaviorally to progesterone. Progestin receptor-immunoreactive (PR-IR) cells were counted in the arcuate nucleus (ARC) and ventrolateral hypothalamus (VLH), the two regions containing the densest populations of estradiol-induced progestin receptors in the mediobasal hypothalamus. There was no age difference in the number of PR-IR cells in the rostral or caudal VLH, but immunostaining was darker in the rostral VLH of juveniles as compared to adults. We found similar numbers of PR-IR cells in the rostral and mid-ARC, but 35% fewer immunostained cells in the caudal ARC of immature, as compared to adult females. Furthermore, staining intensity was weaker in the mid- and caudal ARC of the juvenile females. These data suggest that the ARC, not the VLH, is a site of fewer estradiol-induced progestin receptors in immature females.  相似文献   

6.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either β-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17β to induce high levels of progestin receptors, and injected intracerebroventricularly with co chicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by β-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many β-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by β-endorphin and/or enkephalin.  相似文献   

7.
Substance P (SP) immunoreactivity in the guinea pig retina was studied by light and electron microscopy. The morphology and distribution of SP-immunoreactive neurons was defined by light microscopy. The SP-immunoreactive neurons formed one population of amacrine cells whose cell bodies were located in the proximal row of the inner nuclear layer. A single dendrite emerged from each soma and descended through the inner plexiform layer toward the ganglion cell layer. SP-immunoreactive processes ramified mainly in strata 4 and 5 of the inner plexiform layer. SP-immunoreactive amacrine cells were present at a higher density in the central region around the optic nerve head and at a lower density in the peripheral region of the retina. The synaptic connectivity of SP-immunoreactive amacrine cells was identified by electron microscopy. SP-labeled amacrine cell processes received synaptic inputs from other amacrine cell processes in all strata of the inner plexiform layer and from bipolar cell axon terminals in sublamina b of the same layer. The most frequent postsynaptic targets of SP-immunoreactive amacrine cells were the somata of ganglion cells and their dendrites in sublamina b of the inner plexiform layer. Amacrine cell processes were also postsynaptic to SP-immunoreactive neurons in this sublamina. No synaptic outputs onto the bipolar cells were observed.  相似文献   

8.
Peripheral treatment with the serotonin releaser fenfluramine or the serotonin agonist quipazine abolished lordosis behavior in ovariectomized estradiol and progesterone-primed female guinea pigs. Quipazine was also effective when administered into a lateral cerebroventricle. The lowest dose of fenfluramine that induced myoclonus (10 mg/kg) was higher than the dose needed to inhibit lordosis (5 mg/kg). Therefore, it appears that myoclonus and lordosis are differentially sensitive to serotonin agonists. The effects of quipazine on lordosis were time dependent. Quipazine had no effect on lordosis when given prior to the onset of sexual receptivity. These data suggest that serotonin agonists might be effective only when progesterone has had sufficient time to induce sexual receptivity. Quipazine did not affect cytoplasmic progestin receptors in brain areas involved in steroid hormone effects on lordosis. This finding, and the finding that quipazine had no effect on lordosis when given prior to the onset of sexual receptivity, suggest increased serotonin transmission does not interfere with estrogen priming or sensitivity of hypothalamic cells to progesterone.  相似文献   

9.
10.
11.
12.
I J Davies  F Naftolin  K J Ryan  J Siu 《Steroids》1975,25(5):591-609
The reliability of agar gel electrophoresis in the measurement of high-affinity saturable estrogen-binding component in the cytosol of the rat pituitary gland and anterior hypothalamus was assessed. The available binding sites were determined in small samples with good precision and accuracy. Incubation with 100-fold competitor was more satisfactory than heat-treatment for measuring nonspecific binding. There was substantial, but incomplete, dissociation of albumin-estradiol complexes. The total number of estrogen binding sites in the anterior hypothalamus was approximately 15% greater in 28-day-old females than males (p .02). However, differences in the number of binding sites in the pituitary was not significant (p .02). The pituitary was found to contain twice as many binding sites as the anterior hypothalamus in both sexes. The latter finding is consistent with the importance of the direct action of estrogen on the pituitary in mediating pituitary function.  相似文献   

13.
14.
Airway hyperresponsiveness is a cardinal feature of asthma. Lung C-fiber activation induces central and local defense reflexes that may contribute to airway hyperresponsiveness. Initial studies show that substance P (SP) activates C fibers even though it is produced and released by these same C fibers. SP may induce release of other endogenous mediators. Bradykinin (BK) is an endogenous mediator that activates C fibers. The hypothesis was tested that SP activates C fibers via BK release. Guinea pigs were anesthetized, and C-fiber activity (FA), pulmonary insufflation pressure (PIP), heart rate, and arterial blood pressure were monitored before and after intravenous injection of capsaicin (Cap), SP, and BK. Identical agonist challenges were repeated after infusion of an antagonist cocktail of des-Arg9-[Leu8]-BK (10(-3) M, B1 antagonist), and HOE-140 (10(-4) M, B2 antagonist). After antagonist administration, BK increased neither PIP nor FA. Increases in neither PIP nor FA were attenuated after Cap or SP challenge. In a second series of experiments, Cap and SP were injected before and after infusion of indomethacin (1 mg/kg iv) to determine whether either agent activates C fibers through release of arachidonic acid metabolites. Indomethacin administration decreased the effect of SP challenge on FA but not PIP. The effect of Cap on FA or PIP was not altered by indomethacin. In subsequent experiments, C fibers were activated by prostaglandin E2 and F2alpha. Therefore, exogenously applied SP stimulates an indomethacin-sensitive pathway leading to C-fiber activation.  相似文献   

15.
With the aid of monoclonal antibodies specific to the estrogen and progestin receptors, we have examined the cellular localization of these proteins in the reproductive tract of male and female macaques. Two striking findings have resulted from our work with these new reagents. First, these receptors are detectable only in cell nuclei, regardless of hormonal treatment, and second, they are often detectable in stromal, but not epithelial cells when the epithelial cells undergo various estrogen or progestin-dependent events. The latter observation has led us to conclude that stromal cell-epithelial cell interactions may play previously unappreciated roles in the hormonal control of the primate reproductive tract. The lines of evidence that have drawn us to this conclusion will be reviewed.  相似文献   

16.
The display of female sexual behavior in guinea pigs is strongly correlated with the concentration of cytoplasmic progestin receptors in hypothalamic-preoptic area-septum (HPS). These progestin receptors increase in concentration in the HPS after a period of oestrogen priming. The synergistic actions of oestrogen and progestin may not only influence noradrenergic transmission, but noradrenergic transmission may influence the degree of synergy between oestrogen and progestin.  相似文献   

17.
18.
A major proportion of the hypothalamic nuclear oestrogen receptors were available for complexing with radioactive oestradiol in vitro at 4 degrees C and were apparently unoccupied . At 6 h after oestradiol administration the content of unoccupied nuclear receptors had increased 2.5-fold and represented 71% of the total nuclear receptor content. These results suggest that unoccupied receptors may be active elements in the 'long-term' receptor population of the hypothalamus. Androgenized females had lower contents of these receptors.  相似文献   

19.
J O White  C Hall    L Lim 《The Biochemical journal》1979,184(2):465-468
Hypothalamic cytosol and nuclear oestrogen receptors are present at birth. A 2-fold increase in cytoplasmic receptor content occurs by the second week, whereas the first significant and equivalent increase in nuclear receptor occurs in the fourth week. The latter reflects reported increases in oestradiol availability thought to lead to complete feminine sexual differentiation. The presence of nuclear receptors in the newborn suggests a requirement for oestrogenic stimulation in early development.  相似文献   

20.
Efferent projections of the lateral septal nucleus (LS) to the preoptic area and the hypothalamus were identified in 20 female guinea pigs after iontophoretic injection of the anterograde axonal tracer Fluoro-Ruby. Tubero-infundibular (TI) neurons of the preoptic area and the hypothalamus were retrogradely labeled after intracardiac injection of Granular Blue or Fluoro-Gold. Magnocellular neurons of the supraoptic and paraventricular nuclei were also labeled. The double labeling procedure allowed an estimation of the extent of the direct relationship between LS efferents and TI neurons. Contacts between lateral septal fibers and TI cell bodies were mainly observed at the light-microscopical level in the preoptic area. A group of labeled fibers coursing along the third ventricle established sparse connections with hypothalamic periventricular TI neurons. A few appositions was observed in the infundibular (arcuate) nucleus, suggestive of a monosynaptic regulation of TI neurons by a septo-arcuate tract. Close association with labeled magnocellular neurons was also noted at the edge of the supraoptic and paraventricular nuclei. The sparse but direct connections between LS and TI neurons may be involved in the neuroendocrine functions of the LS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号