首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatitis B virus (HBV) core (HBc) antigen (HBcAg) is a highly immunogenic subviral particle. Studies with mice have shown that HBcAg can bind and activate B cells in a T-cell-independent fashion. By using a human peripheral blood leukocyte (hu-PBL)-Nod/LtSz-Prkdc(scid)/Prkdc(scid) (NOD/SCID) mouse model, we show here that HBcAg also activates human B cells in vivo in a T-cell-independent way. HBcAg was capable of inducing the secretion of HBcAg-binding human immunoglobulin M (IgM) in naive human B cells derived from adult human and neonatal (cord blood) donors when these hu-PBL were transferred directly into the spleens of optimally conditioned NOD/SCID mice. No such responses were found in chimeric mice that were given hu-PBL plus HBV e antigen or hu-PBL plus phosphate-buffered saline. In addition, HBcAg activated purified human B cells to produce anti-HBc IgM in the chimeric mice, thus providing evidence that HBcAg behaves as a T-cell-independent antigen in humans. However, HBcAg-activated hu-PBL from naive donors were unable to switch from IgM to IgG production, even after a booster dose of HBcAg. Production of HBcAg-specific IgG could only be induced when hu-PBL from subjects who had recovered from or had an ongoing chronic HBV infection were transferred into NOD/SCID mice. Our data suggest that humans also have a population of naive B cells that can bind HBcAg and is subsequently activated to produce HBcAg-binding IgM.  相似文献   

2.
The nucleocapsid (HBcAg) of the hepatitis B virus (HBV) has been suggested as a carrier moiety for vaccine purposes. We investigated the influence of the position of the inserted epitope within hybrid HBcAg particles on antigenicity and immunogenicity. For this purpose, genes coding for neutralizing epitopes of the pre-S region of the HBV envelope proteins were inserted at the amino terminus, the amino terminus through a precore linker sequence, the truncated carboxy terminus, or an internal site of HBcAg by genetic engineering and were expressed in Escherichia coli. All purified hybrid HBc/pre-S polyproteins were particulate. Amino- and carboxy-terminal-modified hybrid HBc particles retained HBcAg antigenicity and immunogenicity. In contrast, insertion of a pre-S(1) sequence between HBcAg residues 75 and 83 abrogated recognition of HBcAg by 5 of 6 anti-HBc monoclonal antibodies and diminished recognition by human polyclonal anti-HBc. Predictably, HBcAg-specific immunogenicity was also reduced. With respect to the inserted epitopes, a pre-S(1) epitope linked to the amino terminus of HBcAg was not surface accessible and not immunogenic. A pre-S(1) epitope fused to the amino terminus through a precore linker sequence was surface accessible and highly immunogenic. A carboxy-terminal-fused pre-S(2) sequence was also surface accessible but weakly immunogenic. Insertion of a pre-S(1) epitope at the internal site resulted in the most efficient anti-pre-S(1) antibody response. Furthermore, immunization with hybrid HBc/pre-S particles exclusively primed T-helper cells specific for HBcAg and not the inserted epitope. These results indicate that the position of the inserted B-cell epitope within HBcAg is critical to its immunogenicity.  相似文献   

3.
目的:构建含有组织型纤溶酶原激活剂(tPA)信号肽的乙型肝炎病毒核心抗原(HBcAg)核酸疫苗。方法将HBcAg基因用PCR方法扩增并分别引入相应的限制性内切酶酶切位点,然后克隆入pJW4303载体中获得相应的核酸疫苗,经筛选鉴定后,用上述核酸疫苗与野生型HBcAg核酸疫苗及空载体质粒pJW4303分别用脂质体瞬时转染293T细胞,应用蛋白印迹法检测核心抗原的表达。结果成功构建以pJW4303为载体的含tPA信号肽的HBcAg核酸疫苗,体外表达证实含tPA信号肽的HBcAg在293T细胞胞内和胞外均能表达,含tPA信号肽的HBcAg核酸疫苗的核心抗原表达水平较高。结论以pJW4303为载体的含tPA信号肽的HBcAg核酸疫苗能够将细胞内的HBcAg分泌到细胞外,为进一步研究其免疫原性打下了基础。  相似文献   

4.
The precore/core gene of hepatitis B virus directs the synthesis of two polypeptides, the 21-kilodalton subunit (p21c) forming the viral nucleocapsid (serologically defined as core antigen [HBcAg]) and a secreted processed protein (p17e, serologically defined as HBe antigen [HBeAg]). Although most of their primary amino acid sequences are identical, HBcAg and HBeAg display different antigenic properties that are widely used in hepatitis B virus diagnosis. To locate and to characterize the corresponding determinants, segments of the core gene were expressed in Escherichia coli and probed with a panel of polyclonal or monoclonal antibodies in radioimmunoassays or enzyme-linked immunosorbent assays, Western blots, and competition assays. Three distinct major determinants were characterized. The single conformational determinant responsible for HBc antigenicity in the assembled core (HBc) and a linear HBe-related determinant (HBe1) were both mapped to an overlapping hydrophilic sequence around amino acid 80; a second HBe determinant (HBe2) was assigned to a location in the vicinity of amino acid 138 but found to require for its antigenicity the intramolecular participation of the extended sequence between amino acids 10 and 140. It is postulated that HBcAg and HBeAg share common basic three-dimensional structure exposing the common linear determinant HBe1 but that they differ in the presentation of two conformational determinants that are either introduced (HBc) or masked (HBe2) in the assembled core. The simultaneous presentation of HBe1 and HBc, two distinctly different antigenic determinants with overlapping amino acid sequences, is interpreted to indicate the presence of slightly differently folded, stable conformational states of p21c in the hepatitis B virus nucleocapsid.  相似文献   

5.
Hepatitis B virus (HBV) expresses two structural forms of the nucleoprotein, the intracellular nucleocapsid (hepatitis core antigen [HBcAg]) and the secreted nonparticulate form (hepatitis e antigen [HBeAg]). The aim of this study was to evaluate the ability of HBcAg- and HBeAg-specific genetic immunogens to induce HBc/HBeAg-specific CD4+/CD8+ T-cell immune responses and the potential to induce liver injury in HBV-transgenic (Tg) mice. Both the HBcAg- and HBeAg-specific plasmids primed comparable immune responses. Both CD4+ and CD8+ T cells were important for priming/effector functions of HBc/HBeAg-specific cytotoxic T-lymphocyte (CTL) responses. However, a unique two-step immunization protocol was necessary to elicit maximal CTL priming. Genetic vaccination did not prime CTLs in HBe- or HBc/HBeAg-dbl-Tg mice but elicited a weak CTL response in HBcAg-Tg mice. When HBc/HBeAg-specific CTLs were adoptively transferred into HBc-, HBe-, and HBc/HBeAg-dbl-Tg mice, the durations of the liver injury and inflammation were significantly greater in HBeAg-Tg recipient mice than in HBcAg-Tg mice. Importantly, liver injury in HBc/HBeAg-dbl-Tg mice was similar to the injury observed in HBeAg-Tg mice. Loss of HBeAg synthesis commonly occurs during chronic HBV infection; however, the mechanism of selection of HBeAg-negative variants is unknown. The finding that hepatocytes expressing wild-type HBV (containing both HBcAg and HBeAg) are more susceptible to CTL-mediated clearance than hepatocytes expressing only HBcAg suggest that the HBeAg-negative variant may have a selective advantage over wild-type HBV within the livers of patients with chronic infection during an immune response and may represent a CTL escape mutant.  相似文献   

6.
Immune tolerance split between hepatitis B virus precore and core proteins   总被引:16,自引:0,他引:16  
The function of the hepatitis B virus (HBV) precore or HBeAg is largely unknown because it is not required for viral assembly, infection, or replication. However, the HBeAg does appear to play a role in viral persistence. It has been suggested that the HBeAg may promote HBV chronicity by functioning as an immunoregulatory protein. As a model of chronic HBeAg exposure and to examine the tolerogenic potential of the HBV precore and core (HBcAg) proteins, HBc/HBeAg-transgenic (Tg) mice crossed with T cell receptor (TCR)-Tg mice expressing receptors for the HBc/HBeAgs (i.e., TCR-antigen double-Tg pairs) were produced. This study revealed three phenotypes of HBe/HBcAg-specific T-cell tolerance: (i) profound T-cell tolerance most likely mediated by clonal deletion, (ii) T-cell clonal ignorance, and (iii) nondeletional T-cell tolerance mediated by clonal anergy and dependent on the structure, location, and concentration of the tolerogen. The secreted HBeAg is significantly more efficient than the intracellular HBcAg at eliciting T-cell tolerance. The split T-cell tolerance between the HBeAg and the HBcAg and the clonal heterogeneity of HBc/HBeAg-specific T-cell tolerance may have significant implications for natural HBV infection and especially for precore-negative chronic hepatitis.  相似文献   

7.
王勇  王登顺 《遗传学报》1996,23(2):91-95
根据鼠免疫球蛋白重。轻链可变区基因FR1和FR4的序列保守性,化学合成了适于体外扩增Ig重、轻链可变区基因(V_H和V_L)的数对引物。以分泌抗人肺腺癌单抗的杂交瘤细胞株WLA-2C4的基因组DNA为模板,PCR扩增V_H和V_L基因,分别克隆人pUC19载体。转化子经蓝、白斑筛选,酶切鉴定,双脱氧测序证实确为鼠单抗可变区基因,其中V_H基因全长为348bp,编码116aa,属重链ⅡB亚类;V_L基因全长318bp,编码106aa,属K轻链Ⅵ亚类。  相似文献   

8.
There are estimated to be 350 million chronic carriers of hepatitis B infection worldwide. Patients with chronic hepatitis B are at risk of liver cirrhosis with associated mortality because of hepatocellular carcinoma and other complications. An important goal, therefore, is the development of an effective therapeutic vaccine against chronic hepatitis B virus (HBV). A major barrier to the development of such a vaccine is the impaired immune response to HBV antigens observed in the T cells of affected patients. One strategy to overcome these barriers is to activate mucosal T cells through the use of nasal vaccination because this may overcome the systemic immune downregulation that results from HBV infection. In addition, it may be beneficial to present additional HBV epitopes beyond those contained in the traditional hepatitis B surface antigen (HbsAg) vaccine, for example, by using the hepatitis B core antigen (HBcAg). This is advantageous because HBcAg has a unique ability to act as a potent Th1 adjuvant to HbsAg, while also serving as an immunogenic target. In this study we describe the effect of coadministration of HBsAg and HBcAg as part of a strategy to develop a more potent and effective HBV therapeutic vaccine.  相似文献   

9.
Hepatitis B virus (HBV) core antigen (HBcAg)-specific CD4+ T-cell responses are believed to play an important role in the control of human HBV infection. In the present study, HBcAg-specific, HLA-DR13*-restricted CD4+ Th1-type T-cell clones were generated which secreted both gamma interferon and tumor necrosis factor alpha after in vitro antigen stimulation. These HBcAg-specific CD4+ Th1-type T cells were able to lyse HBc peptide-loaded Epstein-Barr virus-transformed lymphoblastoid target cells in vitro. To examine whether these HLA-DR13*-restricted human CD4+ Th1 T cells also display the same cytotoxic effects in vivo, we transferred peripheral blood leukocytes (PBL) derived from HBV-infected donors or an HBV-naïve donor sharing the DR13*, together with the HBcAg-specific CD4+ Th1-type T cells and HBcAg, directly into the spleen of optimally conditioned Nod/LtSz-Prkdcscid/Prkdcscid (NOD/SCID) mice. The production of both secondary anti-HBc-immunoglobulin G (anti-HBc-IgG) and primary HBcAg-binding IgM in hu-PBL-NOD/SCID mice was drastically inhibited by HBcAg-specific CD4+ Th1-type T cells. No inhibition was observed when CD4+ Th1 cells and donor PBL did not share an HLA-DR13. These results suggest that HBcAg-specific CD4+ Th1 T cells may be able to lyse HBcAg-binding, or -specific, B cells that have taken up and presented HBcAg in a class II-restricted manner. Thus, HBcAg-specific CD4+ Th1-type T cells can modulate the function and exert a regulatory role in deleting HBcAg-binding, or -specific, human B cells in vivo, which may be of importance in controlling the infection.

The hepatitis B virus (HBV) is a small, enveloped virus with a circular, partially double-stranded DNA genome. It is a major cause of infectious liver disease throughout the world. The majority of acutely infected adults recover from the disease, whereas 5 to 10% become persistently infected and develop chronic liver disease. In contrast to adult infection, neonatally transmitted HBV infection is rarely cleared, and the majority of those infants become chronically infected.Most studies suggest that HBV is not directly cytopathic and immune responses to HBV antigens are responsible for the viral clearance and disease pathogenesis. Antiviral CD8+ T cells are believed to play a major role in the control of HBV infection by virtue of their capacity to identify and kill virus-infected cells (8). Recent studies suggest that viral clearance requires additional cytotoxic T lymphocyte (CTL) functions besides their ability to kill infected cells and that noncytopathic antiviral mechanisms are considered very important in the control of disease (19, 20). It was recently shown that HBV core antigen (HBcAg)-binding B cells are common even in a naive host (5, 27). HBcAg-binding B cells, which take up HBcAg and present viral peptides through class II molecules, may represent up to 15% of the B-cell repertoire in a naive host (5, 27). This suggests that HBV has targeted HBcAg to B cells, although the importance of this targeting is still unknown.During acute self-limited HBV infection, a vigorous HBcAg-specific HLA class II-restricted CD4+ T-cell response is observed, while the HLA class II-restricted, HBV surface antigen (HBsAg)-specific response appears much less vigorous (14, 25). The HBcAg-specific fraction of peripheral blood T cells in acute self-limited hepatitis B selectively secrete Th1-type cytokines, suggesting that Th1-mediated effects may contribute not only to liver cell injury but probably also to recovery from disease and successful control of infection (35). It is becoming increasingly evident that the HBcAg-specific CD4+ T-cell response may play an important role in viral clearance by providing help for the growth and maturation of B cells and CD8+ T cells, by being directly cytotoxic for the infected targets or by modulating the viral replication via secretion of cytokines such as gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) (29).HBsAg-specific HLA class II-restricted CD4+ cytotoxic T-cell clones have been isolated from the liver of chronic active hepatitis B patients and from the peripheral blood leukocytes (PBL) of HBsAg-vaccinated individuals (4, 7). However, the role of HLA class II-restricted HBsAg- and HBcAg-specific CD4+ cytotoxic T cells in the HBV infection, protection, and pathogenesis is not well-defined. There is no direct way to demonstrate in humans that the HLA class II-restricted CD4+ cytotoxic T cells, which have been described in several human viral infections (4, 16, 24, 43), have the same cytotoxic capacity in vivo as in vitro.In the present study, HBcAg-specific HLA class II-restricted CD4+ T-cell clones were generated from the PBL of a DR13-positive subject that had fully recovered from an acute self-limited HBV infection. These HBcAg-specific CD4+ Th1-type T cells partially expressed CD56 and were able to lyse the human target cells (Epstein-Barr virus [EBV]-transformed lymphoblastoid cell lines [LCLs]) in vitro. In vivo experiments in the hu-PBL-NOD/SCID mouse model revealed that HBcAg-specific CD4+ Th1 T cells drastically inhibited the production of HBcAg-specific antibodies, suggesting that these cells were able to specifically lyse the HBcAg-specific human B cells that had taken up and processed HBcAg. These CD4+ Th1-type cytotoxic T cells may exert a regulatory role on the HBcAg-specific antibody production by deleting HBcAg-specific (or -binding) B cells in vivo during natural HBV infection and thus contribute to the successful control of virus and recovery of HBV infection of DR13-positive patients.  相似文献   

10.
Hepatitis B core (HBc)Ag-specific T cells present in the peripheral blood of a patient with chronic active hepatitis B were expanded by co-cultivation for 7 days with rHBcAg. After cloning at 1 cell/well in the presence of PHA and IL-2, five HBcAg-specific CD4+ cloned lines were obtained. All five lines proliferated and produced IL-2, IFN-gamma, and TNF in a dose-dependent fashion in response to HBcAg, but not to HBV envelope Ag. The cloned lines and derivative clones were HLA class II (DR1) restricted. All T cell clones were able to induce anti-HBc production by autologous B cells in response to HBcAg (helper effect). The proliferative response and the helper effect of the HBcAg-specific T cell lines and clones were augmented by co-cultivation with an autologous, autoreactive (HLA-DQ1 specific) T cell clone, even in the absence of HBcAg, and the autoreactive T cells directly stimulated anti-HBc secretion by autologous B cells, presumably due to the release of Ag-nonspecific factors. These findings define a model immunoregulatory circuit the physiologic significance of which remains to be determined.  相似文献   

11.
Comparative immunogenicity of hepatitis B virus core and E antigens   总被引:14,自引:0,他引:14  
The nucleocapsid (hepatitis B core Ag (HBcAg] of the hepatitis B virus is a particulate Ag composed of a single polypeptide (p21). Although a non-particulate form of HBcAg designated hepatitis B e Ag (HBeAg) shares significant amino acid identity, the immune responses to these Ag appear to be regulated independently. This report describes the use of recombinant HBcAg and HBeAg to examine and compare murine T cell and B cell recognition of these related Ag. The HBcAg preparation was stable at pH 7.2 and 9.6 and expressed HBc antigenicity. However, the antigenicity of the HBeAg preparation was pH dependent. At pH 9.6 the HBeAg preparation was non-particulate and expressed HBe antigenicity exclusively; however, at pH 7.2 it was particulate and expressed both HBc and HBe antigenicities. Although this "hybrid" particle most likely does not exist naturally, it is a unique research reagent to investigate the interrelationship between HBcAg and HBeAg. HBcAg was significantly more immunogenic in terms of in vivo antibody production as compared to either the non-particulate or particulate forms of HBeAg. Nevertheless, in most murine strains HBcAg and HBeAg were equivalently immunogenic and crossreactive at the level of T cell activation. The disparity between anti-HBc and anti-HBe antibody production is best explained by the observation that HBcAg can function as a T cell-independent Ag whereas HBeAg is T cell dependent even when present within the same particulate structure as HBcAg. Furthermore, HBcAg was shown to function efficiently as an immunologic carrier moiety for the DNP hapten in athymic as well as euthymic mice in contrast to conventional carrier proteins. These results have implications relevant to the human immune responses to HBcAg and HBeAg during infection, and to vaccine development.  相似文献   

12.
The murine monoclonal antibody 125E11 is an IgG which recognizes PreS1(21-47) fragment of large hepatitis B surface antigen. It has been successfully used for clinical detection of HBV virion in serum of hepatitis B patients. In present study, the genes of variable region in heavy chain (VH) and light chain (VL) of 125E11 have been cloned. Sequence analysis of cloned VH gene and VL gene showed that they had general characterization of immunoglobin variable region genes. According to Kabat classification, VH gene and VL gene belong to VH10 family, subgroup IIID and Vkappa family subgroup I, respectively. An expression vector of 125E11 single-chain Fv antibody fusion protein, in which VH and VL peptide were connected by a flexible linker (Gly(4)Ser)(3), was constructed. The scFv fusion protein was highly expressed in Escherichia coli mainly in inclusion body form. Using urea and pH gradient gel filtration method, the refolding of scFv was efficiently achieved. The refolding efficiency reached about 11% and 2.7 mg refolded scFv was obtained from 1L of culture. The binding activity and specificity of 125E11 scFv against PreS1(21-47)-containing antigen were also analyzed.  相似文献   

13.
The hepatitis B virus (HBV) core Ag (HBcAg) serves as the structural subunit of the highly immunogenic capsid shell. HBcAg harbors a unique arginine-rich C terminus that was implicated in immune responses induced by the capsid. In this study, we examined the capacity of the HBV capsid to induce proinflammatory and regulatory cytokines in human THP-1 macrophages and the possible underlying mechanism. Full-length HBc capsids, but not HBc-144 capsids lacking the arginine-rich domain of HBcAg, efficiently bound differentiated THP-1 macrophages and strongly induced TNF-alpha, IL-6, and IL-12p40. Capsid binding to macrophages and cytokine induction were independent of the RNA associated with the arginine-rich domain. Soluble heparin and heparan sulfate but not chondroitin sulfates greatly diminished cytokine induction through inhibition of capsid binding to THP-1 macrophages. Furthermore, serine phosphorylation in the arginine-rich domain modulates capsid binding to macrophages and the cytokine response. Induction of cytokines by the capsid involved activation of NF-kappaB, ERK-1/2, and p38 MAPK and did not require endosomal acidification. Finally, NF-kappaB activation by the capsid in HEK 293 cells specifically required expression of TLR2 and was compromised by soluble heparin. Thus, cytokine induction by the HBV capsid in macrophages is facilitated by interaction of its arginine-rich domain with membrane heparan sulfate and involves signaling through TLR2.  相似文献   

14.
随着对NIRF(Np95/ICBP-90 like RING finger protein)研究的深入,其功能已涉及细胞癌变进程以及表观遗传学等领域. 近期研究显示,NIRF能与HBc (hepatitis B virus core protein )相互结合,但其对乙型肝炎病毒(HBV)抗原表达的影响尚不明确. 本文通过转染pAAV-HBV1.3质粒和高压水动力法尾静脉注射BALB/C小鼠,建立乙型肝炎病毒的细胞和动物模型,研究NIRF对乙型肝炎病毒抗原表达的影响. ELISA检测细胞上清和小鼠血清中HBsAg、HBeAg的分泌和表达情况,Western 印迹或免疫组化染色技术检测HBcAg. 结果显示,乙型肝炎病毒抗原分泌的细胞以及小动物模型建立成功,并且无论在体内外,NIRF都能对它们的表达起抑制作用,期待能为后续的HBV致病机理以及治疗药物的研究提供支持与帮助.  相似文献   

15.
A human hepatitis B viral enhancer element.   总被引:74,自引:4,他引:70       下载免费PDF全文
Y Shaul  W J Rutter    O Laub 《The EMBO journal》1985,4(2):427-430
  相似文献   

16.
为构建一种重组乙型肝炎病毒(hepatitis B virus,HBV)复制子模型,使其能够在病毒感染的细胞中表达可视化报告基因蛋白,本研究删除HBV基因组核心蛋白(HBV core,HBc)编码区部分序列,构建HBV1.1-ΔHBc113复制子载体.利用内含肽(intein)介导蛋白拼接的特性,选取加强绿色荧光蛋白(...  相似文献   

17.
By establishing hybridomas from two distinct surface IgM+ splenic B cell populations, Ly-1 B cells and "conventional" (Ly-1-) B cells, we found that the Ly-1 B population includes a 30 to 70 times higher frequency (1 to 2%) of cells with specificity for bromelain treated autologous red blood cells (anti-BrMRBC) when compared with conventional B cells (0.03%). We cloned and sequenced the V genes encoding anti-BrMRBC antibody from two hybridomas made with Ly-1 B cells sorted from the spleen of SM/J mice. The VH sequence (for both) is identical with the previously reported sequence associated with this specificity and belongs to a new VH gene family. This gene family, defined here as VH11, has only two members and is the predominant VH rearranged in a collection of Ly-1 B derived anti-BrMRBC hybridomas, always in association with a single VL gene (a member of the V kappa 9 family). Furthermore, analysis of hybridomas made with Ly-1 B cells sorted from the peritoneum reveals a yet higher increased frequency of VH11-encoded anti-BrMRBC specificity (30%). This variation in frequency of anti-BrMRBC in the Ly-1 population depending on location, together with the repeated association of VH11 with a particular V kappa gene suggest that antigen driven selection is (at least in part) responsible for the biased V gene expression seen in this population. Furthermore, a mechanism that might contribute to biased expression, preferential rearrangement due to close proximity to J (as seen in pre-B lines), is excluded by localization of VH11 5' to several of the more J-proximal families (Q52, 7183).  相似文献   

18.
Chronic hepatitis B virus (HBV) infection is the result of an inadequate antiviral immune response to the virus. In this study, we aimed to investigate whether the soluble CD40 ligand-activated B (CD40-B) cells could present antigen and induce specific cytotoxic T lymphocytes (CTLs) in patients with chronic HBV infection. We observed that after activated by sCD40L, the expression of CD80, CD86, major histocompatibility complex (MHC) I and II molecules on the CD40-B cells was significantly increased. Cytometry and fluorescence microscopy showed that more than 41.34% CD40-B cells were loaded by the HBcAg peptide. Furthermore, after been activated and HBcAg18–27 antigen peptide pulsed, B cells obtained from patients with chronic HBV infection could induce HBcAg18–27 specific CTLs in vitro. Taken together, our results show that B cells from patients with chronic HBV infection can be activated by sCD40L and may function as antigen presenting cells and induce HBV-specific CTLs.  相似文献   

19.
Impact of HIV-1 infection on VH3 gene repertoire of naive human B cells   总被引:1,自引:0,他引:1  
B cells of the largest Ig variable heavy chain gene (VH) family, VH3, are reportedly decreased in patients with late stage HIV-1 disease. This deficit may contribute to their impaired responses to infections and vaccines. We confirmed that the VH3 family was underrepresented in serum IgM proteins, with a 45% decrease in patients with advanced HIV-1 disease. However, the proportion of VH3 within VH(1-6) IgM mRNA from peripheral B cells did not differ from that of control subjects (mean +/- SD, 57.1 +/- 9.7 vs 61.1 +/- 8. 7%). Similarly, within VH(1-6) IgD mRNA, which even more closely represents the unstimulated naive repertoire, the relative expression of VH3 mRNA was comparable in the two groups. Moreover, the frequency of individual genes within the VH3 family for IgD, particularly genes which encode putative HIV-1 gp120 binding sites, also was normal in HIV-1-infected patients. However, VH3 family expression for IgG mRNA was significantly decreased (17%) and VH4 IgG was increased (33%) relative to other VH families in advanced HIV-1-infected patients. Thus, the changes in VH family expression were more readily apparent in previously activated IgG "memory" B cell populations and, likely, in cells actively producing IgM rather than in resting naive cells. The presence of a relatively normal naive VH3 IgM and IgD mRNA repertoire in resting cells supports the prospect that with proper stimulation, particularly in conjunction with effective antiviral therapy, vigorous humoral immune responses to infections and vaccines may be elicited in this high-risk population.  相似文献   

20.
A hepatitis B core antigen (HBcAg) gene bearing the 39-amino-acid-long domain A of hepatitis B surface antigen (HBsAg) within the HBcAg immunodominant loop has been constructed and expressed in Escherichia coli. Chimeric capsids demonstrated HBs but not HBc antigenicity and elicited in mice B-cell and T-cell responses against native HBcAg and HBsAg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号