首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid dysfunctions are associated with many pathological signs in the body. One of these is lipid peroxidation that develops due to over- or under-secretion of thyroid hormones. The present study was conducted to determine lipid peroxidation that develops in different tissues including the brain, liver and heart of rats in experimental hyperthyroidism induced by L-thyroxin. The study was carried out on 30 male Sprague-Dawley rats. They were divided into three groups as control, sham hyperthyroidism and hyperthyroidism. Malondialdehyde (MDA) and glutathione (GSH) levels in rat tissues were determined at the end of a 3-weeks period of L-thyroxin administration. It was observed that MDA levels in the hyperthyroidism group were significantly higher in the cerebral cortex, liver and ventriculer tissue of heart (p < 0.001) than in the control and in sham hyperthyroidism groups. GSH levels were higher in the hyperthyroidism group than in control and sham hyperthyroidism groups in all tissues (p < 0.001). Results demonstrate that hyperthyroidism induced by L-thyroxin activates both oxidant and antioxidant systems in cerebral, hepatic and cardiac tissues. However, the increase in antioxidant activity cannot adequately prevent oxidative damage.  相似文献   

2.
Experimental thyrotoxicosis in rats is accompanied by the increase of serum alanine aminotransferase (AlAT), aspartate aminotransferase (AsAT), creatine phosphokinase-MB (CPK-MB) activities and the content of primary products of lipid peroxidation, conjugated dienes, in liver, heart and blood. This suggests impairments in functioning of these organs, which accompany intensification of free radical processes. Melatonin administration resulted in the decrease of AlAT, AsAT, CPK-MB and conjugated dienes; this indicates positive effect of melatonin in this pathology. Thyrotoxicosis is accompanied by the increase of catalase activity in rat liver, heart and serum. Exogenous melatonin decreased specific activity of serum and heart catalase by 22 and 43%, respectively, compared with rats subjected to hyperthyroidism. However, there was insignificant increase in specific activity of liver catalase (by ~15%). Melatonin administration caused a decrease of α-tocopherol content increased in rat tissues under conditions of hyperthyroidism. Thus, exogenous melatonin is capable to reduce intensity of lipid peroxidation in hyperthyroidism and to act as an adaptogen, regulating free radical homeostasis in response to action of pathogenic factors on organism that is associated by concomitant reduction of mobilization of components of the antioxidant system.  相似文献   

3.
Diabetes mellitus and its complications are associated with elevated oxidative stress, leading to much interest in antioxidant compounds as possible therapeutic agents. Two new classes of antioxidant compounds, the pyrrolopyrimidines and the 21-aminosteroids, are known to inhibit lipid peroxidation and other biomolecular oxidation. We hypothesized that in the presence of excess oxidants or the impaired antioxidant defense seen in diabetes mellitus, administration of antioxidants such as these may reverse the effects of diabetes on antioxidant parameters. This study measured the effects of subchronic (14 day) treatment with a pyrrolopyrimidine (PNU-104067F) or a 21-aminosteroid (PNU-74389G) in normal and diabetic Sprague-Dawley rats. Activity levels of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, concentrations of oxidized and reduced glutathione, and lipid peroxidation were used as measures of antioxidant defense in liver, kidney, heart, and brain tissue. In normal rats, the only effect was a 43% increase in cardiac lipid peroxidation after treatment with PNU-104067F. In diabetic rats, the only reversals of the effects of diabetes were a 30% decrease in hepatic glutathione peroxidase activity after PNU-74389G treatment and a 33% increase in cardiac glutathione disulfide concentration after PNU-104067F treatment. In contrast to these effects, increased cardiac glutathione peroxidase and catalase activities, increased brain glutathione peroxidase activity, increased hepatic lipid peroxidation, decreased hepatic glutathione content, and decreased hepatic catalase activity were seen in diabetic rats, reflecting an exacerbation of the effects of diabetes.  相似文献   

4.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

5.
This study examined the effect of dietary polyunsaturated fatty acids (PUFA) that were supplemented with vitamin E on lipid peroxidation, glutathione-dependent detoxifying enzyme system activity, and lipogenic fatty acid synthase (FAS) expression in rat liver. Male Sprague-Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 wk. Alpha-tocopherol was supplemented in perilla oil (0.015%) and fish oil (0.019%). Hepatic thiobarbituric acid reactive substances, an estimate of lipid peroxidation, were not significantly different among the dietary groups. The glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities were all elevated by the polyunsaturated fats, especially fish oil. The activity of FAS was reduced in the polyunsaturated fat-fed groups in the order of fish oil, perilla oil, and corn oil. The mRNA contents decreased in rats that were fed the 10% fat diets, particularly polyunsaturated fats, compared with the rats that were fed the 1% corn oil diet. Similarly, the inhibitory effect was the greatest in fish oil. These results suggest that lipid peroxidation can be minimized by vitamin E; PUFA in itself has a suppressive effect on lipogenic enzyme.  相似文献   

6.
The objective of this study was to compare the effect of cholesterol feeding of rats and rabbits. The levels of lipid peroxidation products and oxysterols in the plasma of the two species plus the antioxidant enzyme activities in the liver and erythrocytes were measured to explain their different susceptibilities to atherosclerosis. Our study showed that rats are less susceptible than are rabbits to the atherogenic effect of a cholesterol-rich diet because of differences in lipid peroxidation products as well as antioxidant enzymes activities in their livers. In rabbits, cholesterol feeding produced severe hypercholesterolemia (43-fold increase) and increased plasma and liver lipid peroxidation. Total as well as the individual oxysterol contents of 7alpha-, 7beta-hydroxycholesterol, alpha-epoxy, beta-epoxycholesterol, cholestanetriol, 7-keto, and 27-hydroxycholesterol significantly increased in the plasma of hypercholesterolemic (HC) rabbits. Erythrocyte glutathione peroxidase (GSH-Px) activity significantly decreased whereas catalase activity significantly increased in HC rabbits. In rats cholesterol feeding increased the plasma cholesterol only twofold and had no effect on plasma or liver lipid peroxidation. Only 7alpha- and 7beta-hydroxycholesterol increased and no change was observed in any of the antioxidant enzymes activity in the erythrocytes. Although cholesterol feeding caused a 10-fold increase of liver cholesterol as ester in both rats and rabbits, the antioxidant enzyme GSH-Px and catalase activities in the liver significantly increased in rats but significantly decreased in rabbits. The increase of GSH-Px and catalase activities in the liver of cholesterol fed rats could have a protective role against oxidation, thus preventing the formation of lipid peroxidation and oxysterols.  相似文献   

7.
Feeding fish (Sardinella longiceps) to normal rats increased lipid peroxidation and total and Se-dependent glutathione peroxidase (GSH-px) activity in erythrocytes and manganese dependent superoxide dismutase (Mn-SOD) activity in liver. Feeding fish to cholesterol stressed rats showed a significant increase in the activity of GSH-px and cholesterol feeding alone, resulted in a significant increase in the lipid peroxidation and liver Mn-SOD activity. The results suggest that the high polyunsaturated fatty acid content of S. longiceps, the fish abundantly available in the west coast of India, does not have any deleterious effect by way of free radical generation. The observed lipid peroxidation is not critical as is evident from the results of glutathione level and other scavenging enzymes.  相似文献   

8.
This paper reports data on the effect of green tea on the lipid peroxidation products formation and parameters of antioxidative system of the liver, blood serum and central nervous tissue of healthy young rats drinking green tea for five weeks. The rats were permitted free access to solubilized extract of green tea. Bioactive ingredients of green tea extract caused in the liver an increase in the activity of glutathione peroxidase and glutathione reductase and in the content of reduced glutathione as well as marked decrease in lipid hydroperoxides (LOOH), 4-hydroksynonenal (4-HNE) and malondialdehyde (MDA). The concentration of vitamin A increased by about 40%. Minor changes in the measured parameters were observed in the blood serum. GSH content increased slightly, whereas the index of the total antioxidant status increased significantly. In contrast, the lipid peroxidation products, particularly MDA was significantly diminished. In the central nervous tissue the activity of superoxide dismutase and glutathione peroxidase decreased while the activity od glutathione reductase and catalase increased after drinking green tea. Moreover the level of LOOH, 4-HNE and MDA significantly decreased. The use of green tea extract appeared to be beneficial to rats in reducing lipid peroxidation products. These results support and substantiate traditional consumption of green tea as protection against lipid peroxidation in the liver, blood serum, and central nervous tissue.  相似文献   

9.
Lipid peroxidation, glutathione level and activity of glutathione-S-transferase were studied in liver and brain of rats 4 and 3 h after a single i.p. administration of 0, 25, 75, 100 mg/kg acrylamide or 0, 50, 100, 200, 600 mg/kg styrene, respectively. In liver both acrylamide and styrene caused an increase in lipid peroxidation and decrease in glutathione contents and activity of glutathione-S-transferase in a dose dependent manner, while in brain only acrylamide produced a decrease in glutathione content. The decrease in glutathione content was not always associated with increase of lipid peroxidation. The enhancement of lipid peroxidation occurred only when glutathione contents were depleted to certain critical levels. No effect of acrylamide or styrene was seen on lipid peroxidation under in vitro conditions. The addition of glutathione in the incubation mixture significantly inhibited the rate of lipid peroxidation of liver homogenates of acrylamide and styrene treated animals.The results suggest that enhancement of lipid peroxidation in liver on exposure to acrylamide or styrene is a consequence of depletion of glutathione to certain critical levels. The inhibition of glutathione-S-transferase activity by acrylamide and styrene suggests that detoxication of these neurotoxic compounds could be suppressed following acute exposure.  相似文献   

10.
In order to find out the effect of chronic ethanol administration on testicular antioxidant system and steroidogenic enzyme activity, male rats fed with ethanol 1.6g/kg body weight per day for four weeks were studied. Besides a drastic reduction in body and testis weight, there was decrease in ascorbic acid, reduced glutathione and activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in the testicular tissue of the treated animals. Simultaneously, there was increase in lipid peroxidation and glutathione S-transferase activity. Activities of 3 beta-hydroxy steroid dehydrogenase and 17 beta-hydroxy steroid dehydrogenase were also found decreased in the treated animals. The results indicate that chronic ethanol administration resulted in increase in oxidative stress and decrease in the activities of steroidogenic enzymes in the rat testes.  相似文献   

11.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

12.
Feeding calculi producing diet (CPD) to rats for 4 weeks produced calcium oxaltate stones. Supplementation of sodium citrate to CPD (c-CPD) prevented stone formation. Except oxalate, the excretion of calcium, phosphorus and magnesium was restored to normal in c-CPD fed rats. The CPD fed rats exhibited increase in glycolic acid oxidase (GAO) and lactate dehydrogenase (LDH) activities and only GAO activity was partially restored in c-CPD fed rats. Kidney sub-cellular fractions of calculi producing diet (CPD) fed rats showed increased susceptibility for lipid peroxidation in presence of promotors. Antioxidant enzyme activities of superoxide dismutase (SOD), catalase and glutathione peroxidase and antioxidant concentrations of reduced glutathione, total thiols, ascorbic acid and vitamin E were significantly decreased while the xanthine oxidase activity, and concentrations of hydroxyl radical, diene conjugates and hydroperoxides were significantly increased in CPD fed rats. The susceptibility to lipid peroxidation, activities of antioxidant enzymes, and the concentration of antioxidants were not normalized by feeding citrate.  相似文献   

13.
Kidney weight was significantly decreased in hypothyroidism (induced by Na131I administration) and increased in hyperthyroidism (induced by thyroxine treatment) as compared to control in female Wistar rats. The tissue lipid peroxidation level remained unchanged in hyperthyroid rats but significantly increased in hypothyroid rats. Superoxide dismutase was decreased in both experimental groups but more so in hyperthyroid rats. Catalase was reduced significantly in hyperthyroid rats but remained unaffected in hypothyroid rats. Tissue glutathione peroxidase (GPx) activity was increased while reduced glutathione levels remained unaltered in both hypothyroid and hyperthyroid rats. Plasma GPx activity was significantly low in both the hypothyroid and hyperthyroid rats. The results suggest alterations in the oxidative stress in hypothyroid and hyperthyroid rat kidneys with concomitant changes of free radical scavengers.  相似文献   

14.
Alcoholic extract of the marine algae Chlorella vulgaris was examined for its free radical scavenging effect with reference to naphthalene-induced lipid peroxidation in serum, liver, and kidney of rats. Initially, upon naphthalene intoxication (435 mg/kg body weight, intraperitoneally), the lipid peroxidation activity increased significantly (P < 0.001), and in contrast, the enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymic antioxidants (glutathione, ascorbic acid, and α-tocopherol) levels decreased remarkably. When the naphthalene stressed rats were treated with Chlorella vulgaris extract (70 mg/kg body weight, orally), the lipid peroxidation activity reduced significantly (P < 0.001) and the activities of both the enzymic and non-enzymic antioxidants increased reaching near control values. The minimum concentration (70 mg/l) of the extract that exhibited maximum (85%) free radical scavenging activity was chosen for the experimental study. The present results suggest that Chlorella vulgaris extract exerts its chemo-preventive effect by modulating the antioxidants status and lipid peroxidation during naphthalene intoxication.  相似文献   

15.
Increased oxidative stress is believed to be an important factor in the development of diabetic complications. In this study, the effect of diabetes on the susceptibility of synaptosomes to oxidative stress, induced by the oxidizing system ascorbate/Fe2+, on the activity of antioxidant enzymes and on the levels of glutathione and vitamin E was investigated. Synaptosomes were isolated from brain of 29-weeks-old Goto-Kakizaki (GK) rats, a model of non-insulin dependent diabetes mellitus and from normal Wistar rats. Synaptosomes isolated from GK rats displayed a lower susceptibility to lipid peroxidation, as assessed by quantifying thiobarbituric acid reactive substances (TBARS), than normal rats (5.33 +/- 0.79 and 7.58 +/- 0.7 nmol TBARS/mg protein, respectively). In the absence of oxidants, no significant differences were found between the levels of peroxidation in synaptosomes of diabetic or control rats. Superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase activities were unaltered in the brain of diabetic rats. There were no statistically significant differences in fatty acid composition of total lipids and reduced glutathione levels in synaptosomes of diabetic and control rats. The decreased susceptibility to membrane lipid peroxidation of diabetic rats synaptosomes correlated with a 1.3-fold increase in synaptosomal vitamin E levels. Vitamin E levels in plasma were also higher in diabetic rats (21.32 micromol/l) as compared to normal rats (15.13 micromol/l). We conclude that the increased resistance to lipid peroxidation in GK rat brain synaptosomes may be due to the increased vitamin E content, suggesting that diabetic animals might develop enhanced defense systems against brain oxidative stress.  相似文献   

16.
Lead is a pervasive environmental pollutant with no beneficial biological role and its toxicity continues to be a major health problem due to its interference with natural environment. In the present study we have evaluated the chemopreventive effect of glycyrrhizin on lead acetate mediated hepatic oxidative stress, toxicity and tumor promotion related alterations in rats. Lead acetate (100mg/kg bwt., i.p.) enhanced lipid peroxidation with concomitant reduction in glutathione, glutathione reductase, glutathione-S-transferase and glutathione peroxidase activities. There was an increase in the levels of transaminase enzymes and LDH. Lead acetate treatment also enhanced ornithine decarboxylase (ODC) activity and [(3)H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with glycyrrhizin (150 and 300 mg/kg bwt., orally) resulted in a significant decrease in hepatic microsomal lipid peroxidation (P<0.001) and increase in the level of GSH content (P<0.001) and its dependent enzyme. There was significant reduction in the levels of SGPT, SGOT and LDH (P<0.001). A significant inhibition in ODC activity and DNA synthesis (P<0.001) was also observed. On the basis of the above results it can be hypothesized that glycyrrhizin is a potent chemopreventive compound against lead acetate mediated hepatic oxidative stress, toxicity and tumor promotion related responses in rats.  相似文献   

17.
Melatonin has recently been suggested as an antioxidant that may protect neurons from oxidative stress. Acute ethanol administration produces both lipid peroxidation as an indicator of oxidative stress in the brain and impairs water-maze performance in spatial learning and memory tasks. The present study investigated the effect of melatonin against ethanol-induced oxidative stress and spatial memory impairment. The Morris water maze was used to evaluate the cognitive functions of rats. Thiobarbituric acid reactive substances (TBARS), which are the indicators of lipid peroxidation, and the activities of antioxidative enzymes (glutathione peroxidase and superoxide dismutase) were measured in the rat hippocampus and prefrontal cortex which form interconnected neural circuits for spatial memory. Acute administration of ethanol significantly increased TBARS levels in the hippocampus. Combined melatonin-ethanol treatment caused a significant increase in glutathione peroxidase activities and a significant decrease of TBARS in the rat hippocampus. In the prefrontal cortex, there was only a significant decrease of TBARS levels in the combined melatonin-ethanol receiving group as compared to the ethanol-treated group. Melatonin did not affect the impairment of spatial memory due to acute ethanol exposure, but melatonin alone had a positive effect on water maze performances. Our study demonstrated that melatonin decreased ethanol-induced lipid peroxidation and increased glutathione peroxidase activity in the rat hippocampus.  相似文献   

18.
Oral administration of K2Cr2O7 to male albino rats at an acute dose of 1500 mg/kg body wt/day for 3 days brought about sharp decrease in the activities of glucose-6-phosphate dehydrogenase and glutathione reductase of kidney epithelial cells. The scavenging system of kidney epithelium is also affected as evident by the highly significant fall in the activities of glutathione peroxidase, superoxide dismutase and catalase which ultimately leads to the increase in lipid peroxidation value in kidney cortical homogenate. However, glutathione-s-transferase activity in cytosol and glutathione and total thiol content in cortical homogenate were not altered. Chronic oral administration of K2Cr2O7 (300 mg/kg body wt/day) for 30 days to rats lead to elevation in the activities of glutathione peroxidase, glutathione reductase, glutathione-s-transferase, superoxide dismutase and catalase with no change in glucose-6-phosphate dehydrogenase activity in epithelial cells. This might lead to the increase in glutathione and total thiol status and decrease in lipid peroxidation value in whole homogenate system.  相似文献   

19.
The effect of the liver mitogen, lead nitrate [Pb(NO3)2], on protein-undernutrition-induced increased lipid peroxidation and reduced antioxidants levels was investigated in rats. Animals were divided into four groups: A, B, C, and D of five animals each. Animals in groups C and D were placed on a low-protein diet (5% casein) and animals in groups A and B were maintained on a normal diet (16% casein) for 14 wk and fed ad libitum. Animals in groups B and D were each given a single intravenous injection of Pb(NO3)2 (100 μmol/kg body weight) 72 h before sacrifice. The results confirm that protein undernutrition (PU) induced an increase in lipid peroxidation with concomitant reductions in catalase (CAT) activity, glutathione (GSH) level, and superoxide dismutase (SOD) activity. Lead (Pb) treatment, however, provoked increased lipid peroxidation, CAT activity, and GSH level but resulted in reduced SOD activity in both normal and PU-rats. These results suggest that Pb exacerbates liver lipid peroxidation in PU rats and suggests the involvement of free radicals in the pathogenesis of Pb poisoning. In addition, the results show that Pb affects well-fed and PU rats in similar ways but that the CAT activity of PU rats is more sensitive to the effect of Pb than that of normal rats.  相似文献   

20.
The effects of administration of oxidized rapeseed oil and α-lipoic acid on activities of hepatic antioxidant enzymes and lipid peroxidation were studied in laboratory rats. There was an increase of the activities of superoxide dismutase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase in rats fed a high fat diet to which 10% oxidized oil was added. Administration of α-lipoic acid resulted in a decrease of the activities of these enzymes. Addition of oxidized oil also resulted in increased production of oxygen radicals, evidenced by elevated malondialdehyde production. Such effect was counteracted by administration of α-lipoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号