首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. In Arabidopsis thaliana, five PAOs (AtPAO1-5) are present with cytosolic or peroxisomal localization. Here, we present a detailed study of the expression pattern of AtPAO1, AtPAO2, AtPAO3 and AtPAO5 during seedling and flower growth and development through analysis of promoter activity in AtPAO::β-glucuronidase (GUS) transgenic Arabidopsis plants. The results reveal distinct expression patterns for each studied member of the AtPAO gene family. AtPAO1 is mostly expressed in the transition region between the meristematic and the elongation zone of roots and anther tapetum, AtPAO2 in the quiescent center, columella initials and pollen, AtPAO3 in columella, guard cells and pollen, and AtPAO5 in the vascular system of roots and hypocotyls. Furthermore, treatment with the plant hormone abscisic acid induced expression of AtPAO1 in root tip and AtPAO2 in guard cells. These data suggest distinct physiological role(s) for each member of the AtPAO gene family.  相似文献   

2.
The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5′UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF–encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient''s pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases.  相似文献   

3.
4.
5.
A novel form of translational regulation is described for the key polyamine biosynthetic enzyme S-adenosylmethionine decarboxylase (AdoMetDC). Plant AdoMetDC mRNA 5' leaders contain two highly conserved overlapping upstream open reading frames (uORFs): the 5' tiny and 3' small uORFs. We demonstrate that the small uORF-encoded peptide is responsible for constitutively repressing downstream translation of the AdoMetDC proenzyme ORF in the absence of increased polyamine levels. This first example of a sequence-dependent uORF to be described in plants is also functional in Saccharomyces cerevisiae. The tiny uORF is required for normal polyamine-responsive AdoMetDC mRNA translation, and we propose that this is achieved by control of ribosomal recognition of the occluded small uORF, either by ribosomal leaky scanning or by programmed -1 frameshifting. In vitro expression demonstrated that both the tiny and the small uORFs are translated. This tiny/small uORF configuration is highly conserved from moss to Arabidopsis thaliana, and a more diverged tiny/small uORF arrangement is found in the AdoMetDC mRNA 5' leader of the single-celled green alga Chlamydomonas reinhardtii, indicating an ancient origin for the uORFs.  相似文献   

6.
Upstream open reading frames (uORFs) are often found in the 5′-leader regions of eukaryotic mRNAs and can negatively modulate the translational efficiency of the downstream main ORF. Although the effects of most uORFs are thought to be independent of their encoded peptide sequences, certain uORFs control translation of the main ORF in a peptide sequence-dependent manner. For genome-wide identification of such peptide sequence-dependent regulatory uORFs, exhaustive searches for uORFs with conserved amino acid sequences have been conducted using bioinformatic analyses. However, whether the conserved uORFs identified by these bioinformatic approaches encode regulatory peptides has not been experimentally determined. Here we analyzed 16 recently identified Arabidopsis thaliana conserved uORFs for the effects of their amino acid sequences on the expression of the main ORF using a transient expression assay. We identified five novel uORFs that repress main ORF expression in a peptide sequence-dependent manner. Mutational analysis revealed that, in four of them, the C-terminal region of the uORF-encoded peptide is critical for the repression of main ORF expression. Intriguingly, we also identified one exceptional sequence-dependent regulatory uORF, in which the stop codon position is not conserved and the C-terminal region is not important for the repression of main ORF expression.  相似文献   

7.
8.
Upstream open reading frames (uORFs) are protein coding elements in the 5′ leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl-tRNA. The conserved h subunit of Arabidopsis eukaryotic initiation factor 3 (eIF3) mitigates the inhibitory effects of certain uORFs. Here, we define more precisely how this occurs, by combining gene expression data from mutated 5′ leaders of Arabidopsis AtbZip11 (At4g34590) and yeast GCN4 with a computational model of translation initiation in wild-type and eif3h mutant plants. Of the four phylogenetically conserved uORFs in AtbZip11, three are inhibitory to translation, while one is anti-inhibitory. The mutation in eIF3h has no major effect on uORF start codon recognition. Instead, eIF3h supports efficient reinitiation after uORF translation. Modeling suggested that the permanent loss of reinitiation competence during uORF translation occurs at a faster rate in the mutant than in the wild type. Thus, eIF3h ensures that a fraction of uORF-translating ribosomes retain their competence to resume scanning. Experiments using the yeast GCN4 leader provided no evidence that eIF3h fosters tRNA reaquisition. Together, these results attribute a specific molecular function in translation initiation to an individual eIF3 subunit in a multicellular eukaryote.  相似文献   

9.

Background  

The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis.  相似文献   

10.
11.
Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. All so far characterized PAOs from monocotyledonous plants, such as the apoplastic maize PAO, oxidize spermine (Spm) and spermidine (Spd) to produce 1,3-diaminopropane, H(2)O(2), and an aminoaldehyde, and are thus considered to be involved in a terminal catabolic pathway. Mammalian PAOs oxidize Spm or Spd (and/or their acetyl derivatives) differently from monocotyledonous PAOs, producing Spd or putrescine, respectively, in addition to H(2)O(2) and an aminoaldehyde, and are therefore involved in a polyamine back-conversion pathway. In Arabidopsis thaliana, five PAOs (AtPAO1-AtPAO5) are present with cytosolic or peroxisomal localization and three of them (the peroxisomal AtPAO2, AtPAO3, and AtPAO4) form a distinct PAO subfamily. Here, a comparative study of the catalytic properties of recombinant AtPAO1, AtPAO2, AtPAO3, and AtPAO4 is presented, which shows that all four enzymes strongly resemble their mammalian counterparts, being able to oxidize the common polyamines Spd and/or Spm through a polyamine back-conversion pathway. The existence of this pathway in Arabidopsis plants is also evidenced in vivo. These enzymes are also able to oxidize the naturally occurring uncommon polyamines norspermine and thermospermine, the latter being involved in important plant developmental processes. Furthermore, data herein reveal some important differences in substrate specificity among the various AtPAOs, which suggest functional diversity inside the AtPAO gene family. These results represent a new starting point for further understanding of the physiological role(s) of the polyamine catabolic pathways in plants.  相似文献   

12.
13.
Four short upstream open reading frames (uORFs) in the mRNA leader are required for the translational control of GCN4 expression in response to amino acid availability. Data are reviewed demonstrating that the fourth (3' proximal) uORF is sufficient to establish the repressed levels of GCN4 expression, while the first uORF functions as a positive regulatory element under starvation conditions to stimulate GCN4 translation. Furthermore, positive and negative trans-acting regulatory factors, the activities of which appear to be modulated according to amino acid availability, exert their effects on GCN4 expression through the uORFs. Direct comparison of the uORFs indicates that there are important nucleotide sequence differences between uORF1 and 4, and that these are located primarily around the termination codons of these elements. Recent findings suggest that the sequences that mediate repression of GCN4 expression are complex, but can be overcome under starvation conditions by ribosomes that have previously translated uORF1.  相似文献   

14.

Background  

Upstream open reading frames (uORFs) can mediate translational control over the largest, or major ORF (mORF) in response to starvation, polyamine concentrations, and sucrose concentrations. One plant uORF with conserved peptide sequences has been shown to exert this control in an amino acid sequence-dependent manner but generally it is not clear what kinds of genes are regulated, or how extensively this mechanism is invoked in a given genome.  相似文献   

15.
16.
17.
18.
19.
The genome of Arabidopsis thaliana contains five genes (AtPAO1 to AtPAO5) encoding polyamine oxidase (PAO) which is an enzyme responsible for polyamine catabolism. To understand the individual roles of the five AtPAOs, here we characterized their tissue-specific and space-temporal expression. AtPAO1 seems to have a specific function in flower organ. AtPAO2 was expressed in shoot meristem and root tip of seedlings, and to a higher extent in the later growth stage within restricted parts of the organs, such as shoot meristem, leaf petiole and also in anther. The expression of AtPAO3 was constitutive, but highest in flower organ. AtPAO3 promoter activity was detected in cotyledon, distal portion of root, boundary region of mature rosette leaf and in filaments of flower. AtPAO4 was expressed at higher level all over young seedlings including roots, and in the mature stage its expression was ubiquitous with rather lower level in stem. AtPAO5 expression was observed in the whole plant body throughout various growth stages. Its highest expression was in flowers, particularly in sepals, but not in petals. Furthermore, we determined the substrate specificity of AtPAO1 to AtPAO4. None of the AtPAO enzymes recognized putrescine (Put). AtPAO2 and AtPAO3 showed almost similar substrate recognition patterns in which the most preferable substrate is spermidine (Spd) followed by less specificity to other tetraamines tested. AtPAO4 seemed to be spermine (Spm)-specific. More interestingly, AtPAO1 preferred thermospermine (T-Spm) and norspermine (NorSpm) to Spm, but did not recognize Spd. Based on the results, the individual function of AtPAOs is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号