首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-carotene (Car) and chlorophyll (Chl) function as secondary electron donors in photosystem II (PS II) under conditions, such as low temperature, when electron donation from the O(2)-evolving complex is inhibited. In prior studies of the formation and decay of Car(*+) and Chl(*+) species at low temperatures, cytochrome b(559) (Cyt b(559)) was chemically oxidized prior to freezing the sample. In this study, the photochemical formation of Car(*+) and Chl(*+) is characterized at low temperature in O(2)-evolving Synechocystis PS II treated with ascorbate to reduce most of the Cyt b(559). Not all of the Cyt b(559) is reduced by ascorbate; the remainder of the PS II reaction centers, containing oxidized low-potential Cyt b(559), give rise to Car(*+) and Chl(*+) species after illumination at low temperature that are characterized by near-IR spectroscopy. These data are compared to the measurements on ferricyanide-treated O(2)-evolving Synechocystis PS II in which the Car(*+) and Chl(*+) species are generated in PS II centers containing mostly high- and intermediate-potential Cyt b(559). Spectral differences observed in the ascorbate-reduced PS II samples include decreased intensity of the Chl(*+) and Car(*+) absorbance peaks, shifts in the Car(*+) absorbance maxima, and lack of formation of a 750 nm species that is assigned to a Car neutral radical. These results suggest that different spectral forms of Car are oxidized in PS II samples containing different redox forms of Cyt b(559), which implies that different secondary electron donors are favored depending on the redox form of Cytb(559) in PS II.  相似文献   

2.
In the last few years various advances have contributed to an increased understanding of Photosystem II (PS II). Most notably, the X-ray diffraction analysis of crystallized bacterial reaction centers, along with the recognition that there is functional and structural homology between the bacterial reaction center and PS II, has led to detailed information regarding the potential function of individual proteins and residues in the PS II complex. In-depth studies of PS II structure and function, however, require the availability of specific mutants in which certain proteins have been altered. Recombinant DNA technology has provided the methodology by which generation of such mutants has become feasible. This minireview focuses on methods for mutagenesis of PS II components and on the impact of mutant analysis on the understanding of PS II structure and function.  相似文献   

3.
Tracewell CA  Brudvig GW 《Biochemistry》2008,47(44):11559-11572
Photosystem II (PS II) is unique among photosynthetic reaction centers in having secondary electron donors that compete with the primary electron donors for reduction of P680(+). We have characterized the photooxidation and dark decay of the redox-active accessory chlorophylls (Chl) and beta-carotenes (Car) in oxygen-evolving PS II core complexes by near-IR absorbance and EPR spectroscopies at cryogenic temperatures. In contrast to previous results for Mn-depleted PS II, multiple near-IR absorption bands are resolved in the light-minus-dark difference spectra of oxygen-evolving PS II core complexes including two fast-decaying bands at 793 and 814 nm and three slow-decaying bands at 810, 825, and 840 nm. We assign these bands to chlorophyll cation radicals (Chl(+)). The fast-decaying bands observed after illumination at 20 K could be generated again by reilluminating the sample. Quantization by EPR gives a yield of 0.85 radicals per PS II, and the yield of oxidized cytochrome b 559 by optical difference spectroscopy is 0.15 per PS II. Potential locations of Chl(+) and Car(+) species, and the pathways of secondary electron transfer based on the rates of their formation and decay, are discussed. This is the first evidence that Chls in the light-harvesting proteins CP43 and CP47 are oxidized by P680(+) and may have a role in Chl fluorescence quenching. We also suggest that a possible role for negatively charged lipids (phosphatidyldiacylglycerol and sulfoquinovosyldiacylglycerol identified in the PS II structure) could be to decrease the redox potential of specific Chl and Car cofactors. These results provide new insight into the alternate electron-donation pathways to P680(+).  相似文献   

4.
Site-directed mutagenesis of the structural gene for azurin from Pseudomonas aeruginosa has been used to prepare azurins in which amino acid residues in two separate electron-transfer sites have been changed: His-35-Lys and Glu-91-Gln at one site and Phe-114-Ala at the other. The charge-transfer band and the EPR spectrum are the same as in the wild-type protein in the first two mutants, whereas in the Phe-114-Ala azurin, the optical band is shifted downwards by 7 nm and the copper hyperfine splitting is decreased by 4.10(-4)/cm. This protein also shows an increase of 20-40 mV in the reduction potential compared to the other azurins. The potentials of all four azurins decrease with increasing pH in phosphate but not in zwitterionic buffers with high ionic strength. The rate constant for electron exchange with cytochrome c551 is unchanged compared to the wild-type protein in the Phe-114-Ala azurin, but is increased in the other two mutant proteins. The results suggest that Glu-91 is not important for the interaction with cytochrome c551 and that His-35 plays no critical role in the electron transfer to the copper site.  相似文献   

5.
The structure and functional mode of photosystem II reaction center protein D1 can be studied by analyzing the effects of amino acid substitutions within the binding niche for QB, the second stable electron acceptor of photosystem II, on herbicide binding. Here we report on site-directed mutagenesis of the psbA gene coding for the D1 protein in the unicellular alga Chlamydomonas reinhardtii. The chloroplasts of wild-type cells were transformed using the particle gun. The plasmids introduced carried an in vitro mutated fragment of the psbA gene. We obtained a double mutant with replacements of amino acids 264 and 266 and a triple mutant having an additional substitution in position 259. The sensitivities of both mutants toward several types of herbicides are given and compared with those of a mutant having only a substitution at position 264.  相似文献   

6.
Photosystem II (PSII) contains two accessory chlorophylls (Chl(Z), ligated to D1-His118, and Chl(D), ligated to D2-His117), carotenoid (Car), and heme (cytochrome b(559)) cofactors that function as alternate electron donors under conditions in which the primary electron-donation pathway from the O(2)-evolving complex to P680(+) is inhibited. The photooxidation of the redox-active accessory chlorophylls and Car has been characterized by near-infrared (near-IR) absorbance, shifted-excitation Raman difference spectroscopy (SERDS), and electron paramagnetic resonance (EPR) spectroscopy over a range of cryogenic temperatures from 6 to 120 K in both Synechocystis PSII core complexes and spinach PSII membranes. The following key observations were made: (1) only one Chl(+) near-IR band is observed at 814 nm in Synechocystis PSII core complexes, which is assigned to Chl(Z)(+) based on previous spectroscopic studies of the D1-H118Q and D2-H117Q mutants [Stewart, D. H., Cua, A., Chisholm, D. A., Diner, B. A., Bocian, D. F., and Brudvig, G. W. (1998) Biochemistry 37, 10040-10046]; (2) two Chl(+) near-IR bands are observed at 817 and 850 nm in spinach PSII membranes which are formed with variable relative yields depending on the illumination temperature and are assigned to Chl(Z)(+), and Chl(D)(+), respectively; (3) the Chl and Car cation radicals have significantly different stabilities at reduced temperatures with Car(+) decaying much faster; (4) in Synechocystis PSII core complexes, Car(+) decays by recombination with Q(A)(-) and not by Chl(Z)/Chl(D) oxidation, with multiphasic kinetics that are attributed to an ensemble of protein conformers that are trapped as the protein is frozen; and (5) in spinach PSII membranes, Car(+) decays mainly by recombination with Q(A)(-), but also partly by formation of the 850 nm Chl cation radical. The greater stability of Chl(Z)(+) at low temperatures enabled us to confirm that resonance Raman bands previously assigned to Chl(Z)(+) are correctly assigned. In addition, the formation and decay of these cations provide insight into the alternate electron-donation pathways to P680(+).  相似文献   

7.
Oligonucleotide-directed mutagenesis was employed to produce mutants of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Escherichia coli and Bacillus stearothermophilus. Three different mutants proteins--His176----Asn, Cys149----Ser, Cys149----Gly--were isolated from one or both of the enzymes. The study of the properties of these mutants has shown that Cys149 is clearly responsible for the information of a charge-transfer transition, named the Racker band, observed during the NAD+ binding to apoGAPDH. This result excludes a similarity between the Racker band and the charge-transfer transition observed following the alkylation of GAPDH by 3-chloroacetyl pyridine-adenine dinucleotide.  相似文献   

8.
Site-directed mutagenesis in the photosystem II (PSII) oxygen-evolving enzyme was achieved in the thermophilic cyanobacterium Thermosynechococcus elongatus. PSII from this species is the focus of attention because its robustness makes it suitable for enzymological and biophysical studies. PSII, which lacks the redox-active tyrosine Tyr(D), was engineered by substituting a phenylalanine for tyrosine 160 of the D2 protein. An aim of this work was to engineer a mutant for spectroscopy, in particular, for EPR, on the active enzyme. The Tyr(D)(*) EPR signal was monitored in whole cells (i) to control the expression level of the two genes (psbD(1) and psbD(2)) encoding D2 and (ii) to assess the success of the mutagenesis. Both psbD(1) and psbD(2) could be expressed, and recombination occurred between them. The D2-Y160F mutation was introduced into psbD(1) after psbD(2) was deleted and a His-tag was attached to the CP43 protein. The effects of the Y160F mutation were characterized in cells, thylakoids, and isolated PSII. The efficiency of enzyme function under the conditions tested was unaffected. The distribution and lifetime of the redox states (S(n)() states) of the enzyme cycle were modified, with more S(0) in the dark and no rapid decay phase of S(3). Although not previously reported, these effects were expected because Tyr(D)(*) is able to oxidize S(0) and Tyr(D) is able to reduce S(2) and S(3). Slight changes in the difference spectra in the visible and infrared recorded upon the formation and reduction of the chlorophyll cation P(680)(+) and kinetic measurements of P(680)(+) reduction indicated minor structural perturbations, perhaps in the hydrogen-bonding network linking Tyr(D) and P(680), rather than electrostatic changes associated with the loss of a charge from Tyr(D)(*)(H(+)). We show here that this fully active preparation can provide spectra from the Mn(4)CaO(4) complex and associated radical species uncontaminated by Tyr(D)(*).  相似文献   

9.
A pigment-deficient reaction center of photosystem II (PSII)-with all the core pigments (two molecules of chlorophyll a and one of pheophytin a in each D protein) but with only one molecule each of peripheral chlorophyll a (Chlz) and beta-carotene (Car)-has been investigated by pump-probe spectroscopy. The data imply that Car and Chlz are both bound to D1. The absence of Car and Chlz in D2 allows the unprecedented observation of secondary electron transfer in D1 of PSII reaction centers at room temperature. The absorption band of the Car cation in D1 (Car(D1)(+*)) peaks around 910 nm (as against 990 nm for Car(D2)(+*)), and its positive hole is shared by ChlzD1, whereas Car(D2)(+*) can disappear by capturing an electron from ChlzD2.  相似文献   

10.
To identify important residues in the D2 protein of photosystem II (PSII) in the cyanobacterium Synechocystis sp. strain PCC 6803, we randomly mutagenized a region of psbDI (coding for a 96-residue-long C-terminal part of D2) with sodium bisulfite. Mutagenized plasmids were introduced into a Synechocystis sp. strain PCC 6803 mutant that lacks both psbD genes, and mutants with impaired PSII function were selected. Nine D2 residues were identified that are important for PSII stability and/or function, as their mutation led to impairment of photoautotrophic growth. Five of these residues are likely to be involved in the formation of the Q(A)-binding niche; these are Ala249, Ser254, Gly258, Ala260, and His268. Three others (Gly278, Ser283, and Gly288) are in transmembrane alpha-helix E, and their alteration leads to destabilization of PSII but not to major functional alterations of the remaining centers, indicating that they are unlikely to interact directly with cofactors. In the C-terminal lumenal tail of D2, only one residue (Arg294) was identified as functionally important for PSII. However, from the number of mutants generated it is likely that most or all of the 70 residues that are susceptible to bisulfite mutagenesis have been altered at least once. The fact that mutations in most of these residues have not been picked up by our screening method suggests that these mutations led to a normal photoautotrophic phenotype. A novel method of intragenic complementation in Synechocystis sp. strain PCC 6803 was developed to facilitate genetic analysis of psbDI mutants containing several amino acid changes in the targeted domain. Recombination between genome copies in the same cell appears to be much more prevalent in Synechocystis sp. strain PCC 6803 than was generally assumed.  相似文献   

11.
Tripeptidyl-peptidase II (TPP II) is a 138-kDa subtilisin-like serine peptidase forming high molecular mass oligomers of >1000 kDa. The enzyme participates in general protein turnover and apoptotic pathways, and also has specific substrates such as neuropeptides. Here we report the site-directed mutagenesis of amino acids predicted to be involved in catalysis. The amino acids forming the putative catalytic triad (Asp-44, His-264, Ser-449) as well as the conserved Asn-362, potentially stabilizing the transition state, were replaced by alanine and the mutated cDNAs were transfected into human embryonic kidney (HEK) 293 cells. In clones stably expressing the mutant proteins, TPP II activity did not exceed the endogenous activity, thus confirming the essential role of the above amino acids in catalysis. Mutant and wild-type TPP II subunits co-eluted from a gel filtration column, suggesting that the subunits associate and that the native subunit conformation was retained in the mutants. Interestingly, the S449A and a H264A mutant enzyme affected the quaternary structure of the endogenously expressed TPP II, resulting in formation of an active, larger complex of >10,000 kDa.  相似文献   

12.
Photoprotective mechanisms have evolved in photosynthetic organisms to cope with fluctuating light conditions. Under high irradiance, the production of dangerous oxygen species is stimulated and causes photo-oxidative stress. One of these photoprotective mechanisms, non photochemical quenching (qE), decreases the excess absorbed energy arriving at the reaction centers by increasing thermal dissipation at the level of the antenna. In this review we describe results leading to the discovery of this process in cyanobacteria (qE(cya)), which is mechanistically distinct from its counterpart in plants, and recent progress in the elucidation of this mechanism. The cyanobacterial photoactive soluble orange carotenoid protein is essential for the triggering of this photoprotective mechanism. Light induces structural changes in the carotenoid and the protein leading to the formation of a red active form. The activated red form interacts with the phycobilisome, the cyanobacterial light-harvesting antenna, and induces a decrease of the phycobilisome fluorescence emission and of the energy arriving to the reaction centers. The orange carotenoid protein is the first photoactive protein to be identified that contains a carotenoid as the chromophore. Moreover, its photocycle is completely different from those of other photoactive proteins. A second protein, called the Fluorescence Recovery Protein encoded by the slr1964 gene in Synechocystis PCC 6803, plays a key role in dislodging the red orange carotenoid protein from the phycobilisome and in the conversion of the free red orange carotenoid protein to the orange, inactive, form. This protein is essential to recover the full antenna capacity under low light conditions after exposure to high irradiance. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

13.
Rochaix J  Fischer N  Hippler M 《Biochimie》2000,82(6-7):635-645
The photosystem I (PSI) complex is a multisubunit protein-pigment complex embedded in the thylakoid membrane which acts as a light-driven plastocyanin/cytochrome c(6)-ferredoxin oxido-reductase. The use of chloroplast transformation and site-directed mutagenesis coupled with the biochemical and biophysical analysis of mutants of the green alga Chlamydomonas reinhardtii with specific amino acid changes in several subunits of PSI has provided new insights into the structure-function relationship of this important photosynthetic complex. In particular, this molecular-genetic analysis has identified key residues of the reaction center polypeptides of PSI which are the ligands of some of the redox cofactors and it has also provided important insights into the orientation of the terminal electron acceptors of this complex. Finally this analysis has also shown that mutations affecting the donor side of PSI are limiting for overall electron transfer under high light and that electron trapping within the terminal electron acceptors of PSI is highly deleterious to the cells.  相似文献   

14.
The primary electron donor P700 of photosystem I is a dimer comprised of chlorophyll a (P(B)) and chlorophyll a' (P(A)). P(A) is involved in a hydrogen bond network with several surrounding amino acid residues and a nearby water molecule. To investigate the influence of hydrogen bond interactions on the properties of P700, the threonine at position A739, which donates a putative hydrogen bond to the 13(1)-keto group of P(A), was replaced with valine, histidine, and tyrosine in Chlamydomonas reinhardtii using site-directed mutagenesis. Growth of the mutants was not impaired. (i) The (P700(+)* - P700) FTIR difference spectra of the mutants lack a negative band at 1634 cm(-1) observed in the wild-type spectrum and instead exhibit a new negative band between 1658 and 1672 cm(-1) depending on the mutation. This band can therefore be assigned to the 13(1)-keto group of P(A) which is upshifted to higher frequencies upon removal of the hydrogen bond. (ii) The main bleaching band in the Q(y)() region of the (P700(+)* - P700) and ((3)P700 - P700) absorption difference spectra is blue shifted for the mutants by approximately 6 nm compared to that of the wild type. A blue shift is also observed for the main bleaching in the Soret region. (iii) The (P700(+)* - P700) CD difference spectrum of the wild type reveals two bands at 694 nm (positive CD) and 680 nm (negative CD) of approximately equal area. For each mutant, these two components are blue-shifted to the same extent. The results strongly suggest that a blue shift of the Q(y) absorption band of P(A) is responsible for a blue shift of the exciton bands. (iv) Redox titrations yielded a decrease in the midpoint potential for the oxidation of P700 by 32 mV for the exchange of Thr against Val. (v) ENDOR spectroscopy shows that the hfc of the methyl protons at position 12 of the spin-carrying Chl P(B) is decreased due to the removal of the hydrogen bond to P(A). This indicates a redistribution of spin density in P700(+)* compared to that in the wild type. This gives evidence for an electronic coupling between the two halves of the dimer in the wild type and mutants.  相似文献   

15.
Photosystem II contains two redox-active tyrosines. One of these, YZ, reduces the reaction center chlorophyll, P680, and transfers the oxidizing equivalent to the oxygen-evolving complex. The second, YD, has a long-lived free radical state of unknown function. We recently established that YD is Tyr-160 of the D2 polypeptide by site-directed mutagenesis of a psbD gene in the unicellular cyanobacterium Synechocystis 6803 [Debus, R. J., Barry, B. A., Babcock, G. T., & McIntosh, L. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 427-430]. YZ is most likely the symmetry-related Tyr-161 of the D1 polypeptide. To test this hypothesis, we have changed Tyr-161 to phenylalanine by site-directed mutagenesis of a psbA gene in Synechocystis. The resulting mutant assembles PSII, as judged by its ability to produce the stable Y+D radical, but is unable to grow photosynthetically and exhibits altered fluorescence properties. The nature of the fluorescence change indicates that forward electron transfer to P+680 is disrupted in the mutant. These results provide strong support for our identification of Tyr-161 in the D1 polypeptide with YZ.  相似文献   

16.
17.
Previous covalent modification studies showed that tyrosine 114 of Escherichia coli ADP-glucose synthetase is involved in substrate binding (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). We have prepared, via site-directed mutagenesis, an E. coli ADP-glucose synthetase variant (Phe114) containing a Tyr114 to Phe substitution in order to test whether the phenolic hydroxyl group plays a critical role in catalysis. Kinetic characterization of Phe114 ADP-glucose synthetase indicates that the Tyr114 hydroxyl is not obligatory for the enzyme catalysis. However, the variant enzyme showed altered properties. It showed a decreased apparent affinity for the substrates. The variant enzyme showed less than 2-fold activation by 5 mM fructose 1,6-bisphosphate in the ADP-glucose synthesis direction. In contrast, in the pyrophosphorolysis direction, the mutant enzyme showed about a 30-fold activation by 5 mM fructose 1,6-bisphosphate. The variant enzyme is heat-labile compared to wild type enzyme. It lost about 60% enzyme activity on incubation at 65 degrees C for 5 min in the presence of 30 mM Pi. The wild type enzyme is stable under these conditions. The results indicate that tyrosine 114 is involved directly or indirectly in enzyme catalysis, but is not obligatory for the enzyme catalysis. Conversion of Tyr114 to Phe also alters the regulatory properties of the enzyme with respect to activation by fructose-1,6-P2 and inhibition by AMP.  相似文献   

18.
Human glutamate carboxypeptidase II [GCPII (EC 3.4.17.21)] is recognized as a promising pharmacological target for the treatment and imaging of various pathologies, including neurological disorders and prostate cancer. Recently reported crystal structures of GCPII provide structural insight into the organization of the substrate binding cavity and highlight residues implicated in substrate/inhibitor binding in the S1' site of the enzyme. To complement and extend the structural studies, we constructed a model of GCPII in complex with its substrate, N-acetyl-l-aspartyl-l-glutamate, which enabled us to predict additional amino acid residues interacting with the bound substrate, and used site-directed mutagenesis to assess the contribution of individual residues for substrate/inhibitor binding and enzymatic activity of GCPII. We prepared and characterized 12 GCPII mutants targeting the amino acids in the vicinity of substrate/inhibitor binding pockets. The experimental results, together with the molecular modeling, suggest that the amino acid residues delineating the S1' pocket of the enzyme (namely Arg210) contribute primarily to the high affinity binding of GCPII substrates/inhibitors, whereas the residues forming the S1 pocket might be more important for the 'fine-tuning' of GCPII substrate specificity.  相似文献   

19.
The role of lipids in photosystem II   总被引:1,自引:0,他引:1  
The thylakoid membranes of photosynthetic organisms, which are the sites of oxygenic photosynthesis, are composed of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol (PG). The identification of many genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that deficiency of these lipids primarily affects the structure and function of photosystem II (PSII) but not of photosystem I (PSI). Recent X-ray crystallographic analyses of PSII and PSI complexes from Thermosynechococcus elongatus revealed the presence of 25 and 4 lipid molecules per PSII and PSI monomer, respectively, indicating the enrichment of lipids in PSII. Therefore, lipid molecules bound to PSII may play special roles in the assembly and functional regulation of the PSII complex. This review summarizes our present understanding of the biochemical and physiological roles of lipids in photosynthesis, with a special focus on PSII. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

20.
Chloride binding in photosystem II (PSII) is essential for photosynthetic water oxidation. However, the functional roles of chloride and possible binding sites, during oxygen evolution, remain controversial. This paper examines the functions of chloride based on its binding site revealed in the X-ray crystal structure of PSII at 1.9 ? resolution. We find that chloride depletion induces formation of a salt bridge between D2-K317 and D1-D61 that could suppress the transfer of protons to the lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号