首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei B  Zhou Y  Xu Z  Xi B  Cheng H  Ruan J  Zhu M  Hu Q  Wang Q  Wang Z  Yan Z  Jin K  Zhou D  Xuan F  Huang X  Shao J  Lu P 《PloS one》2011,6(11):e27545

Background

Human oxoguanine glycosylase 1 (hOGG1) in base excision repair (BER) pathway plays a vital role in DNA repair. Numerous epidemiological studies have evaluated the association between hOGG1 Ser326Cys polymorphism and the risk of cancer. However, the results of these studies on the association remain conflicting. To derive a more precise estimation of the association, we conducted a meta-analysis.

Methodology/Principal Findings

A comprehensive search was conducted to identify the eligible studies of hOGG1 Ser326Cys polymorphism and cancer risk. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. We found that the hOGG1 Ser326Cys polymorphism was significantly associated with overall cancer risk (Cys/Cys vs. Ser/Ser: OR = 1.19, 95%CI = 1.09–1.30, P<0.001; Cys/Cys vs. Cys/Ser+Ser/Ser: OR = 1.16, 95%CI = 1.08–1.26, P<0.001). Moreover, in subgroup analyses by cancer types, the stronger significant association between hOGG1 Ser326Cys polymorphism and lung cancer risk was found (Cys/Cys vs. Ser/Ser: OR = 1.29, 95%CI = 1.16–1.44, P<0.001; Cys/Cys vs. Cys/Ser+Ser/Ser: OR = 1.22, 95%CI = 1.12–1.33, P<0.001). The significant effects of hOGG1 Ser326Cys polymorphism on colorectal, breast, bladder, prostate, esophageal, and gastric cancer were not detected. In addition, in subgroup analyses by ethnicities, we found that the hOGG1 Ser326Cys polymorphism was associated with overall cancer risk in Asians (Cys/Cys vs. Ser/Ser: OR = 1.21, 95%CI = 1.10–1.33, P<0.001).

Conclusions

This meta-analysis showed that hOGG1 326Cys allele might be a low-penetrant risk factor for lung cancer.  相似文献   

2.

Background

The hOGG1 gene encodes a DNA glycosylase enzyme responsible for DNA repair. The Ser326Cys polymorphism in this gene may influence its repair ability and thus plays a role in carcinogenesis. Several case-control studies have been conducted on this polymorphism and its relationship with the risk of hepatocellular carcinoma (HCC) among East Asians. However, their results are inconsistent.

Methods

We performed a meta-analysis of published case-control studies assessing the association of the hOGG1 Ser326Cys polymorphism with HCC risk among East Asians. PubMed, EMBASE, SCI, BIOSIS, CNKI and WanFang databases were searched. A random-effect model was used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). Analyses were conducted for additive, dominant and recessive genetic models.

Results

Eight studies were identified involving 2369 cases and 2442 controls assessing the association of the hOGG1 Ser326Cys polymorphism with HCC risk among East Asians. Applying a dominant genetic model, only in the Chinese population, the Cys allele was significantly associated with increased risk of HCC (OR 1.56, 95% CI 1.12–2.17). However, two studies influenced this finding according to sensitivity analysis. Furthermore, considerable heterogeneity and bias existed among Chinese studies.

Conclusion

There is limited evidence to support that the hOGG1 Ser326Cys polymorphism is associated with HCC risk among East Asians. Well-designed and large-sized studies are required to determine this relationship.  相似文献   

3.
Xu B  Tong N  Chen SQ  Yang Y  Zhang XW  Liu J  Hu XN  Sha GZ  Chen M 《PloS one》2012,7(1):e30309
The HOGG1 gene catalyzes the excision of modified bases and removal of DNA damage adducts. It may play an important role in the prevention of carcinogenesis. Ser326Cys polymorphism localizes in exon 7 of the hOGG1 gene. It takes the form of an amino acid substitution, from serine to cysteine, in codon 326. Several epidemiological association studies have been conducted on this polymorphism and its relationship with the risk of prostate cancer. However, results have been conflicting. To resolve this conflict, we conducted a meta-analysis on the association between this polymorphism and prostate cancer, taking into account race, country, sources of controls, and smoking status. A total of nine studies covering 2779 cases and 3484 controls were included in the current meta-analysis. Although no significant association was found between hOGG1 Ser326Cys polymorphism and prostate cancer susceptibility in the pooled analysis, individuals with Ser/Cys+Cys/Cys genotypes were found to have greater risk of prostate cancer if they were also smokers (OR = 2.66, 95% CI = 1.58−4.47) rather than non-smokers (OR = 2.18, 95% CI = 1.13−4.19), compared with those with Ser/Ser genotype. In conclusion, our meta-analysis demonstrates that hOGG1 Ser326Cys polymorphism is a risk factor for prostate cancer in smokers. Further studies are needed to confirm this relationship.  相似文献   

4.

Background

The human 8-oxoguanine DNA glycosylase 1 (hOGG1), apurinic/apyrimidinic endonuclease 1 (APE1), and adenosine diphosphate ribosyl transferase (ADPRT) genes play an important role in the DNA base excision repair pathway. Single nucleotide polymorphisms (SNPs) in critical genes are suspected to be associated with the risk of lung cancer. This study aimed to identify the association between the polymorphisms of hOGG1 Ser326Cys, APE1 Asp148Glu, and ADPRT Val762Ala, and the risk of lung adenocarcinoma in the non-smoking female population, and investigated the interaction between genetic polymorphisms and environmental exposure in lung adenocarcinoma.

Methods

We performed a hospital-based case-control study, including 410 lung adenocarcinoma patients and 410 cancer-free hospital control subjects who were matched for age. Each case and control was interviewed to collect information by well-trained interviewers. A total of 10 ml of venous blood was collected for genotype testing. Three polymorphisms were analyzed by the polymerase chain reaction-restriction fragment length polymorphism technique.

Results

We found that individuals who were homozygous for the variant hOGG1 326Cys/Cys showed a significantly increased risk of lung adenocarcinoma (OR = 1.54; 95% CI: 1.01–2.36; P = 0.045). When the combined effect of variant alleles was analyzed, we found an increased OR of 1.89 (95% CI: 1.24–2.88, P = 0.003) for lung adenocarcinoma individuals with more than one homozygous variant allele. In stratified analyses, we found that the OR for the gene-environment interaction between Ser/Cys and Cys/Cys genotypes of hOGG1 codon 326 and cooking oil fumes for the risk of lung adenocarcinoma was 1.37 (95% CI: 0.77–2.44; P = 0.279) and 2.79 (95% CI: 1.50–5.18; P = 0.001), respectively.

Conclusions

The hOGG1 Ser326Cys polymorphism might be associated with the risk of lung adenocarcinoma in Chinese non-smoking females. Furthermore, there is a significant gene-environment association between cooking oil fumes and hOGG1 326 Cys/Cys genotype in lung adenocarcinoma among female non-smokers.  相似文献   

5.
The previous published data on the association between the 8-oxo-guanine glycosylase-1 (OGG1) and apurinic/apyrimidinic-endonuclease-1 (APEX1/APE1) polymorphisms and lung cancer risk remained controversial. Several polymorphisms in the OGG1 and APEX1 gene have been described, including the commonly occurring Ser326Cys in OGG1 and Asp148Glu in APEX1. This meta-analysis of literatures was performed to derive a more precise estimation of the relationship. A total of 37 studies were identified to the meta-analysis, including 9,203 cases and 10,994 controls for OGG1 Ser326Cys (from 25 studies) and 3,491 cases and 4,708 controls for APEX1 Asp148Glu (from 12 studies). When all the eligible studies were pooled into the meta-analysis of OGG1 Ser326Cys polymorphism, significantly increased lung cancer risk was observed in recessive model (OR?=?1.17, 95?% CI?=?1.03–1.33) and in additive model (OR?=?1.21, 95?% CI?=?1.03–1.42). In the stratified analysis, significantly increased risk of lung cancer was also observed on the population-based studies (recessive model: OR?=?1.26, 95?% CI?=?1.08–1.46, additive model: OR?=?1.42, 95?% CI?=?1.06–1.73) and non-smokers (dominant model: OR?=?1.20, 95?% CI?=?1.02–1.42, recessive model: OR?=?1.20, 95?% CI?=?1.02–1.40, additive model: OR?=?1.35, 95?% CI?=?1.08–1.68). Additionally, when one study was deleted in the sensitive analysis, the results of OGG1 Ser326Cys were changed in Asians (recessive model: OR?=?1.16, 95?% CI?=?1.06–1.27, additive model: OR?=?1.23, 95?% CI?=?1.09–1.38). When all the eligible studies were pooled into the meta-analysis of APEX1 Asp148Glu polymorphism, there was no evidence of significant association between lung cancer risk and APEX1 Asp148Glu polymorphism in any genetic model. In the stratified analysis, significantly decreased lung adenocarcinoma risk was observed in recessive model (OR?=?0.68, 95?% CI?=?0.48–0.97, P h?=?0.475, I2?=?0.0?%). Additionally, when one study was deleted in the sensitive analysis, the results of APEX1 Asp148Glu were changed in Asians (recessive model: OR?=?1.21, 95?% CI?=?1.03–1.43) and smokers (dominant model: OR?=?1.62, 95?% CI?=?1.08–2.44, additive model: OR?=?1.37, 95?% CI?=?1.02–1.84). In summary, this meta-analysis indicates that OGG1 Ser326Cys show an increased lung cancer risk in Asians and non-smokers, APEX1 Asp148Glu polymorphism may be associated with decreased lung adenocarcinoma risk, and APEX1 Asp148Glu polymorphism show an increased lung cancer risk in Asians and smokers. However, a study with the larger sample size is needed to further evaluated gene-environment interaction on OGG1 Ser326Cys and APEX1 Asp148Glu polymorphisms and lung cancer risk.  相似文献   

6.

Background

Genetic polymorphism of human 8-oxoguanine glycosylase 1 (hOGG1) Ser326Cys (rs1052133) has been implicated in the risk of Esophageal Squamous Cell Carcinoma (ESCC). However, the published findings are inconsistent. We therefore performed a meta-analysis to derive a more precise estimation of the association between the hOGG1 Ser326Cys polymorphism and ESCC risk.

Methodology/Principal Findings

A comprehensive search was conducted to identify eligible studies of hOGG1 Ser326Cys polymorphism and the risk of the ESCC. Three English and two Chinese databases were used, and ten published case-control studies, including 1987 cases and 2926 controls were identified. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association in the dominant and recessive model. Pearson correlation coefficient (PCC) and standard error (SE) were used to assess the number of Cys allele and ESCC risk in the additive model. Overall, significant associations between the hOGG1 Ser326Cys polymorphism and ESCC risk were found in the recessive model: OR = 1.37 (95% CI: 1.06–1.76, p = 0.02). We also observed significant associations in the Caucasian, Chinese language, population based control and tissue subgroups. In the additive model, positive correlation was found between the number of Cys allele and the risk of ESCC in overall studies (PCC = 0.109, SE = 0.046, p = 0.02), Caucasian subgroup and population subgroup. Funnel plot and Egger''s test indicate there was no publication bias in this meta-analysis.

Conclusion

Under the published data, the hOGG1 Ser326Cys polymorphism is associated with ESCC risk in the recessive and additive model. Compared with the Ser/Ser and Ser/Cys genotype, Cys/Cys genotype might contribute to increased risk of ESCC. And the risk of ESCC is positively correlated with the number of Cys allele. A better case-control matched study should be designed in order to provide a more precise estimation.  相似文献   

7.
Niu Y  Li F  Tang B  Shi Y  Yu P 《Molecular biology reports》2012,39(6):6563-6568
Studies investigating the association between human 8-oxoguanine glycosylase 1(hOGG1) Ser326Cys polymorphism and gastric cancer (GC) risk have reported conflicting results. We performed a meta-analysis of published case–control studies to better compare results between studies. 11 eligible studies with 2,180 GC cases and 3,985 controls were selected. There were 5 studies involving Caucasians and 5 studies involving Asians. The combined result based on all studies did not show significant difference in any genetics models. Ser/Cys + Cys/Cys versus Ser/Ser (OR = 0.91, 95% CI 0.81–1.03), Cys/Cys versus Ser/Cys + Ser/Ser (OR = 1.07, 95% CI 0.80–1.44), Ser/Cys versus Ser/Ser (OR = 0.91, 95% CI 0.80–1.03), Sys/Cys versus Ser/Cys (OR = 1.10, 95% CI 0.83–1.47), Cys/Cys versus Ser/Ser (OR = 0.99, 95% CI 0.74–1.34), Cys versus Ser (OR = 1.01, 95% CI 0.88–1.17).When stratifying for ethnicity, there was still no significant association found between hOGG1 Ser326Cys polymorphism and GC risk. Funnel plot and Egger’s test showed some evidence of publication bias on the basis of all studies. Two studies were the main reason because their samples were too small. However, the result of sensitivity analysis suggested that the influence of these two studies and one mixed population study on the pooled OR was weak. Our result could explain the association between hOGG1 Ser326Cys polymorphism and GC risk. In conclusion, we did not found the evidence that the Cys allele at codon 326 of hOGG1 could increase GC risk in our analysis.  相似文献   

8.
Oxidative DNA damage, caused by either endogenous or exogenous sources of reactive oxygen species (ROS), has been linked several diseases including Graves' disease (GD). 7,8‐Dihydro‐8‐oxoguanine (8‐oxoG) is a major lesion produced by ROS and is considered a key biomarker of oxidative DNA damage. In humans, 8‐oxoG is mainly repaired by 8‐oxoguanine DNA N‐glycosylase‐1 (hOGG1), which is an essential component of the base excision repair (BER) pathway. The functional studies showed that hOGG1 Ser326Cys polymorphism is associated with the reduced DNA repair activity and increased risk for some oxidative stress‐related diseases. In this study, we firstly investigated hOGG1 Ser326Cys polymorphism in GD. According to our results, Cys/Cys genotype frequency in the GD patients (23.4%) was significantly higher than the controls (9.2%). Cys/Cys genotype had an 3.5‐fold [95% CI (confidence interval): 2.10–6.01, p < 0.001] the Cys allele had 1.83‐fold (95% CI: 1.43–2.34, p < 0.001) increase in the risk for developing GD. Our results suggest that Ser326Cys polymorphism of the hOGG1 gene is associated with GD risk. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Duan WX  Hua RX  Yi W  Shen LJ  Jin ZX  Zhao YH  Yi DH  Chen WS  Yu SQ 《PloS one》2012,7(4):e35970

Background

Numerous studies have investigated association of OGG1 Ser326Cys polymorphism with lung cancer susceptibility; however, the findings are inconsistent. Therefore, we performed a meta-analysis based on 27 publications encompass 9663 cases and 11348 controls to comprehensively evaluate such associations.

Methods

We searched publications from MEDLINE and EMBASE which were assessing the associations between OGG1 Ser326Cys polymorphism and lung cancer risk. We calculated pooled odds ratio (OR) and 95% confidence interval (CI) by using either fixed-effects or random-effects model. We used genotype based mRNA expression data from HapMap for SNP rs1052133 in normal cell lines among 270 subjects with four different ethnicities.

Results

The results showed that individuals carrying the Cys/Cys genotype did not have significantly increased risk for lung cancer (OR = 1.15, 95% CI = 0.98–1.36) when compared with the Ser/Ser genotype; similarly, no significant association was found in recessive, dominant or heterozygous co-dominant model (Ser/Cys vs. Cys/Cys). However, markedly increased risks were found in relatively large sample size (Ser/Ser vs. Cys/Cys: OR = 1.29, 95% CI = 1.13–1.48, and recessive model: OR = 1.19, 95% CI = 1.07–1.32). As to histological types, we found the Cys/Cys was associated with adenocarcinoma risk (Ser/Ser vs. Cys/Cys: OR = 1.32, 95% CI = 1.12–1.56; Ser/Cys vs. Cys/Cys: OR = 1.19, 95% CI = 1.04–1.37, and recessive model OR = 1.23, 95% CI = 1.08–1.40). No significant difference of OGG1 mRNA expression was found among genotypes between different ethnicities.

Conclusions

Despite some limitations, this meta-analysis established solid statistical evidence for an association between the OGG1 Cys/Cys genotype and lung cancer risk, particularly for studies with large sample size and adenocarcinoma, but this association warrants additional validation in larger and well designed studies.  相似文献   

10.
The cellular reaction to the DNA-damaging agents may modulate individual’s cancer susceptibility. This reaction is mainly determined by the efficacy of DNA repair, which in turn, may be influenced by the variability of DNA repair genes, expressed by their polymorphism. The hOGG1 gene encodes a glycosylase of base excision repair and RAD51 specifies a key protein in homologues recombination repair. Both proteins can be involved in the repair of DNA lesions, which are known to contribute to endometrial cancer. In the present work we determined the extent of basal DNA damage and the efficacy of removal of DNA damage induced by hydrogen peroxide and N-methyl-N′-nitro N-nitrosoguanidyne (MNNG) in peripheral blood lymphocytes of 30 endometrial cancer patients and 30 individuals without cancer. The results from DNA damage and repair study were correlated with the genotypes of two common polymorphisms of the hOGG1 and RAD51 genes: a G>C transversion at 1245 position of the hOGG1 gene producing a Ser → Cys substitution at the codon 326 (the Ser326Cys polymorphism) and a G>C substitution at 135 position of the RAD51 gene (the 135G>C polymorphism). DNA damage and repair were evaluated by alkaline single cell gel electrophoresis and genotypes were determined by restriction fragment length polymorphism PCR. We observed a strong association between endometrial cancer and the C/C genotype of the 135G>C polymorphism of the RAD51 gene. Moreover, there was a strong correlation between that genotype and endometrial cancer occurrence in subjects with a high level of basal DNA damage. We did not observe any correlation between the Ser326Cys polymorphism of the hOGG1 gene and endometrial cancer. Our result suggest that the 135G>C polymorphism of the RAD51 gene may be linked to endometrial cancer and can be considered as an additional marker of this disease.  相似文献   

11.
Colorectal cancer represents a complex disease where susceptibility may be influenced by genetic polymorphisms in the DNA repair system. In the present study we investigated the role of nine single nucleotide polymorphisms in eight DNA repair genes on the risk of colorectal cancer in a hospital-based case-control population (532 cases and 532 sex- and age-matched controls). Data analysis showed that the variant allele homozygotes for the Asn148Glu polymorphism in the APE1 gene were at a statistically non-significant increased risk of colorectal cancer. The risk was more pronounced for colon cancer (odds ratio, OR: 1.50; 95% confidence interval, CI: 1.01-2.22; p=0.05). The data stratification showed increased risk of colorectal cancer in the age group 64-86 years in both individuals heterozygous (OR: 1.79; 95% CI: 1.04-3.07; p=0.04) and homozygous (OR: 2.57; 95% CI: 1.30-5.06; p=0.007) for the variant allele of the APE1 Asn148Glu polymorphism. Smokers homozygous for the variant allele of the hOGG1 Ser326Cys polymorphism showed increased risk of colorectal cancer (OR: 4.17; 95% CI: 1.17-15.54; p=0.03). The analysis of binary genotype combinations showed increased colorectal cancer risk in individuals simultaneously homozygous for the variant alleles of APE1 Asn148Glu and hOGG1 Ser326Cys (OR: 6.37; 95% CI: 1.40-29.02; p=0.02). Considering the subtle effect of the DNA repair polymorphisms on the risk of colorectal cancer, exploration of gene-gene and gene-environmental interactions with a large sample size with sufficient statistical power are recommended.  相似文献   

12.
Zhao H  Qin C  Yan F  Wu B  Cao Q  Wang M  Zhang Z  Yin C 《DNA and cell biology》2011,30(5):317-321
Oxidative DNA damage caused by reactive oxygen species plays an important role in cancer development. Human 8-oxoguanine DNA glycosylase (hOGG1) is involved in base excision repair of 8-oxoguanine from damaged DNA. We hypothesized that variants in the hOGG1 gene are associated with risk of renal cell carcinoma (RCC). In a hospital-based case-control study of 572 RCC patients and 575 cancer-free controls frequency matched by age and sex, we genotyped the functional polymorphism Ser326Cys (rs1052133) and assessed its associations with risk of RCC in a Chinese population. We found that individuals with the Cys allele were associated with an increased risk of RCC (odds ratio [OR]?=?1.40, 95% confidence interval [CI]?=?1.02-1.90), compared with those with the Ser/Ser genotype, particularly among subgroups of body mass index >24?kg/m(2) (OR?=?1.75, 95% CI?=?1.12-2.73) and non-smokers (OR?=?1.60, 95% CI?=?1.07-2.38). Further, the polymorphism was associated with risk of developing localized stage and well-differentiated RCC. Our results suggested that the polymorphism is involved in the etiology of RCC and thus may be a marker for genetic susceptibility to RCC.  相似文献   

13.
The enzyme 8-oxoguanine glycosylase 1 (OGG1) repairs oxidatively damaged DNA and a polymorphism in the OGG1 gene (Ser326Cys) has been associated with lung cancer. We examined associations between the polymorphism and intake of fruits and vegetables and smoking in the development of lung cancer, by genotyping blood samples from 431 lung cancer cases and 796 comparison persons, which were identified within a prospective cohort on 57,000 cohort members. We found no overall association between the OGG1 polymorphism and lung cancer. There was a statistically significant interaction between the polymorphism and dietary intake of vegetables, with a 54% decrease in lung cancer risk per 50% increase in vegetable intake among homozygous Cys326Cys carriers and no decrease in risk among carriers of Ser326Ser or Ser326Cys. The same tendency was seen in relation to intake of fruit. There were no statistically significant interactions between the OGG1 polymorphism and smoking.  相似文献   

14.
The main purpose of this pilot study was to investigate the possible influence of genetic polymorphisms of the hOGG1 (Ser326Cys) gene in DNA damage and repair activity by 8‐oxoguanine DNA glycosylase 1 (OGG1 enzyme) in response to 16 weeks of combined physical exercise training. Thirty‐two healthy Caucasian men (40–74 years old) were enrolled in this study. All the subjects were submitted to a training of 16 weeks of combined physical exercise. The subjects with Ser/Ser genotype were considered as wild‐type group (WTG), and Ser/Cys and Cys/Cys genotype were analysed together as mutant group (MG). We used comet assay in conjunction with formamidopyrimidine DNA glycoslyase (FPG) to analyse both strand breaks and FPG‐sensitive sites. DNA repair activity were also analysed with the comet assay technique. Our results showed no differences between DNA damage (both strand breaks and FPG‐sensitive sites) and repair activity (OGG1) between genotype groups (in the pre‐training condition). Regarding the possible influence of genotype in the response to 16 weeks of physical exercise training, the results revealed a decrease in DNA strand breaks in both groups, a decrease in FPG‐sensitive sites and an increase in total antioxidant capacity in the WTG, but no changes were found in MG. No significant changes in DNA repair activity was observed in both genotype groups with physical exercise training. This preliminary study suggests the possibility of different responses in DNA damage to the physical exercise training, considering the hOGG1 Ser326Cys polymorphism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Oxidatively damaged DNA base lesions are considered to be mainly repaired by 8-oxoguanine DNA glycosylase (OGG1) mediated pathways. We investigated the effect of the OGG1 Ser326Cys polymorphism on the level and repair of oxidatively damaged DNA in mononuclear blood cells (MNBC) by means of the comet assay. We collected blood samples from 1,019 healthy subjects and genotyped for the OGG1 Ser326Cys polymorphism. We found 49 subjects homozygous for the variant genotype (Cys/Cys) and selected same numbers of age-matched subjects with the heterozygous (Ser/Cys) and homozygous wild-type genotype (Ser/Ser). Carriers of the Cys/Cys genotype had higher levels of formamidopyrimidine DNA glycosylase (FPG) sensitive sites in MNBC (0.31 ± 0.03 lesions/10(6)bp) compared to Ser/Ser (0.19 ± 0.02 lesions/10(6)bp, P<0.01). The level of hOGG1 sensitive sites in MNBC from the Ser326Cys carriers (0.19 ± 0.16 lesions/10(6) bp) was also higher compared to the Ser/Ser genotype (0.11 ± 0.09 lesions/10(6) bp, P<0.05). Still, there was no genotype-related difference in DNA repair incision activity of MNBC extracts on nucleoids with oxidatively damaged DNA induced by Ro19-8022/white light (P=0.20). In addition, there were no differences in the expression of OGG1 (P=0.69), ERCC1 (P=0.62), MUTYH (P=0.85), NEIL1 (P=0.17) or NUDT1 (P=0.48) in whole blood. Our results indicate that the OGG1 Ser326Cys polymorphism has limited influence on the DNA repair incisions by extracts of MNBC, whereas the apparent increased risk of cancer in subjects with the Cys/Cys genotype may be because of higher levels of oxidatively damaged DNA.  相似文献   

16.
The conclusions of the published reports on the relationship between glutathione S-transferase P1 (GSTP1) gene polymorphism and the risk of lung cancer are still debated. GSTP1 is one of the important mutant sites reported at present. This meta-analysis was performed to evaluate the association between GSTP1 and the risk of lung cancer. The association investigations were identified from PubMed and Cochrane Library, and eligible studies were included and synthesized using meta-analysis method. Forty-four reports were included into this meta-analysis for the association of GSTP1 A/G gene polymorphism and lung cancer susceptibility, consisting of 12,363 patients with lung cancer and 13,948 controls. The association between GSTPI G allele and lung cancer risk was found in this meta-analysis (OR 1.08, 95?% CI 1.02–1.15, P?=?0.01). However, the GG genotype and AA genotype were not associated with the susceptibility of lung cancer. Furthermore, there was no association between GSTP1 A/G gene polymorphism and the risk of lung cancer in Caucasians, and East-Asians. In conclusion, GSTP1 G allele is associated with the lung cancer susceptibility. However, more studies on the relationship between GSTP1 A/G gene polymorphism and the risk of lung cancer should be performed in the future.  相似文献   

17.
Polymorphisms in nucleotide and base excision repair genes are associated with the variability in the risk of developing lung cancer. In the present study, we investigated the polymorphisms of following selected DNA repair genes: XPC (Lys939Gln), XPD (Lys751Gln), hOGG1 (Ser326Cys) and XRCC1 (Arg399Gln), and the risks they present towards the development of lung cancer with the emphasis to gender differences within the Slovak population. We analyzed 761 individuals comprising 382 patients with diagnosed lung cancer and 379 healthy controls. Genotypes were determined by polymerase chain reaction/restriction fragment length polymorphism method. We found out statistically significant increased risk for lung cancer development between genders. Female carrying XPC Gln/Gln, XPC Lys/Gln+Gln/Gln and XRCC1 Arg/Gln, XRCC1 Arg/Gln+Gln/Gln genotypes had significantly increased risk of lung cancer corresponding to OR = 2.06; p = 0.04, OR = 1.66; p = 0.04 and OR = 1.62; p = 0.04, OR = 1.69; p = 0.02 respectively. In total, significantly increased risk of developing lung cancer was found in the following combinations of genotypes: XPD Lys/Gln+XPC Lys/Lys (OR = 1.62; p = 0.04), XRCC1 Gln/Gln+hOGG1 Ser/Ser (OR = 2.14; p = 0.02). After stratification for genders, the following combinations of genotype were found to be significant in male: XPD Lys/Gln+XPC Lys/Lys (OR = 1.87; p = 0.03), XRCC1 Arg/Gln+XPC Lys/Lys (OR = 4.52; p = 0.0007), XRCC1 Arg/Gln+XPC Lys/Gln (OR = 5.44; p < 0.0001). In female, different combinations of the following genotypes were found to be significant: XRCC1 Arg/Gln+hOGG1 Ser/Ser (OR = 1.98; p = 0.04), XRCC1 Gln/Gln+hOGG1 Ser/Ser (OR = 3.75; p = 0.02), XRCC1 Arg/Gln+XPC Lys/Gln (OR = 2.40; p = 0.04), XRCC1 Arg/Gln+XPC Gln/Gln (OR = 3.03; p = 0.04). We found out decreased cancer risk in genotype combinations between female patients and healthy controls: XPD Lys/Lys+XPC Lys/Gln (OR = 0.45; p = 0.02), XPD Lys/Gln+XPC Lys/Lys (OR = 0.32; p = 0.005), XPD Lys/Gln+XPC Lys/Gln (OR = 0.48; p = 0.02). Our results did not show any difference between pooled smokers and non-smokers in observed gene polymorphisms in the association to the lung cancer risk. However, gender stratification indicated the possible effect of heterozygous constitution of hOGG1 gene (Ser/Cys) on lung cancer risk in female non-smokers (OR = 0.20; p = 0.01) and heterozygous constitution of XPC gene (Lys/Gln) in male smokers (OR = 2.70; p = 0.01).  相似文献   

18.
8-Oxoguanine DNA glycosylase (OGG1) is one of the important base excision repair enzymes that repair 8-oxoguanine lesion incorporated within the DNA of an individual by reactive oxygen species. The aim of this study was to detect the role of OGG1 Ser326Cys polymorphism in susceptibility to colorectal cancer (CRC) in a Kashmiri population. We investigated the genotype distribution of the OGG1 gene in 114 CRC cases in comparison with 200 healthy subjects. There was no significant association between OGG1 Ser326Cys polymorphism and CRC, but the homozygous Cys/Cys variant genotype was associated with an increased risk of colon cancer (p<0.05). This study suggests that the OGG1 polymorphism is not associated with the risk of development of CRC in the Kashmiri population in general but modulates the risk of cancer development in colon via interaction with many dietary factors.  相似文献   

19.
20.
Smart DJ  Chipman JK  Hodges NJ 《DNA Repair》2006,5(11):1337-1345
Cells are continuously exposed to damaging reactive oxygen species (ROS), which are produced from both endogenous and exogenous sources. 8-Oxodeoxyguanosine (8-oxodG) is an abundant base lesion formed during oxidative stress which, if not repaired, can give rise to G:C-->T:A transversions in DNA. The 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated base excision repair (BER) pathway operates to remove 8-oxodG lesions. Ogg1 deletion and polymorphism may result in a hypermutator phenotype and susceptibility to oxidative pathologies including cancer. Limited and conflicting evidence exists regarding the repair capacity of a prevalent human OGG1 (hOGG1) polymorphism, the Cys326-hOGG1 variant. The formamidopyrimidine DNA glycosylase (FPG)-modified comet assay was used to investigate the ability of sodium dichromate, potassium bromate and Ro19-8022 (+light) to induce DNA damage in mogg1(-/-) null (KO) and wild-type (WT) mouse embryonic fibroblasts (MEFs) and to assess hOGG1 variant-initiated BER capacities under conditions of oxidative stress. Treatment of WT MEFs with these pro-oxidant agents induced direct DNA strand breaks in a concentration-dependent manner, whereas, identical treatment of KO MEFs produced no effect. In contrast, KO MEFs accumulated significantly more FPG-sensitive sites than WT MEFs. Expression of hOGG1 in KO MEFs restored the WT phenotype in response to all pro-oxidants tested. The results suggest OGG1-initiated BER generates direct DNA strand breaks detected by the conventional comet assay, thus it is important that researchers do not interpret these as direct damage per se but rather a reflection of the repair process. The data also indicate Cys326-hOGG1-initiated BER is transiently impaired with respect to Ser326-hOGG1 (wild-type)- and Gly326-hOGG1 (artificial)-initiated BER following pro-oxidant treatment, possibly via hOGG1 cysteine 326 oxidation. This finding suggests the homozygous cys326/cys326 genotype may be classified as a biomarker of disease susceptibility, which is in support of a growing body of epidemiological evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号