首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.  相似文献   

3.
Esophageal cancer is the sixth leading cause of cancer-related deaths worldwide. It has been reported that histone demethylases are involved in the carcinogenesis of certain types of tumors. Here, we studied the role of one of the histone lysine demethylases, plant homeodomain finger protein 8 (PHF8), in the carcinogenesis of esophageal squamous cell carcinoma (ESCC). Using short hairpin RNA via lentiviral infection, we established stable ESCC cell lines with constitutive downregulation of PHF8 expression. Knockdown of PHF8 in ESCC cells resulted in inhibition of cell proliferation and an increase of apoptosis. Moreover, there were reductions of both anchorage-dependent and -independent colony formation. In vitro migration and invasion assays showed that knockdown of PHF8 led to a reduction in the number of migratory and invasive cells. Furthermore, downregulation of PHF8 attenuated the tumorigenicity of ESCC cells in vivo. Taken together, our study revealed the oncogenic features of PHF8 in ESCC, suggesting that PHF8 may be a potential diagnostic marker and therapeutic target for ESCC.  相似文献   

4.
As they initiate migration in vertebrate embryos, neural crest cells are enriched for methylation cycle enzymes, including S-adenosylhomocysteine hydrolase (SAHH), the only known enzyme to hydrolyze the feedback inhibitor of trans-methylation reactions. The importance of methylation in neural crest migration is unknown. Here, we show that SAHH is required for emigration of polarized neural crest cells, indicating that methylation is essential for neural crest migration. Although nuclear histone methylation regulates neural crest gene expression, SAHH and lysine-methylated proteins are abundant in the cytoplasm of migratory neural crest cells. Proteomic profiling of cytoplasmic, lysine-methylated proteins from migratory neural crest cells identified 182 proteins, several of which are cytoskeleton related. A methylation-resistant form of one of these proteins, the actin-binding protein elongation factor 1 alpha 1 (EF1α1), blocks neural crest migration. Altogether, these data reveal a novel and essential role for post-translational nonhistone protein methylation during neural crest migration and define a previously unknown requirement for EF1α1 methylation in migration.  相似文献   

5.
6.
Zhou G  Li H  Gong Y  Zhao Y  Cheng J  Lee P  Zhao Y 《Proteomics》2005,5(14):3814-3821
Squamous cell carcinoma of the esophagus (ESCC), a major subtype of esophageal carcinoma, is one of the aggressive cancers with worst prognosis in the world. The dismal outcome of ESCC is attributed to multiple reasons including its aggressive nature, largely unknown molecular mechanism of its progression, and the lack of biomarkers for early detection and effective prediction of its clinical behavior. To identify proteins with prognostic and/or predictive value, we applied a proteomics strategy to quantify proteins differentially expressed in ESCC using matched samples of carcinoma and adjacent normal epithelial cells. The analysis led to identification of 28 proteins aberrantly expressed in cancer cells with changes of at least three-fold in ESCC relative to normal squamous epithelial cells. These changes represent functional alterations of essential proteins for normal cellular physiology, accounting for many cellular changes involved in development of ESCC, including cell transformation, loss of differentiation, tumor growth, apoptosis, tumor invasion, and cell metabolism. The differentially expressed proteins shed new insights on the mechanism of tumorigenesis and provide candidate biomarkers for early detection of ESCC.  相似文献   

7.
8.
9.
DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for mammalian development and maintenance of DNA methylation following DNA replication in cells. The DNA methylation process generates S-adenosyl-l-homocysteine, a strong inhibitor of DNMT1. Here we report that S-adenosylhomocysteine hydrolase (SAHH/AHCY), the only mammalian enzyme capable of hydrolyzing S-adenosyl-l-homocysteine binds to DNMT1 during DNA replication. SAHH enhances DNMT1 activity in vitro, and its overexpression in mammalian cells led to hypermethylation of the genome, whereas its inhibition by adenosine periodate or siRNA-mediated knockdown resulted in hypomethylation of the genome. Hypermethylation was consistent in both gene bodies and repetitive DNA elements leading to aberrant gene regulation. Cells overexpressing SAHH specifically up-regulated metabolic pathway genes and down-regulated PPAR and MAPK signaling pathways genes. Therefore, we suggest that alteration of SAHH level affects global DNA methylation levels and gene expression.  相似文献   

10.
MicroRNAs (miRNA) have played an important role in carcinogenesis. In this study, Agilent miRNA microarray was used to identify differentially expressed miRNAs in esophageal squamous cell carcinoma (ESCC) tissues and miR-195 was downregulated in ESCC compared with normal esophageal tissues. Moreover, Cdc42 was confirmed as target gene of miR-195. Ectopic expression of miR-195 in ESCC cells significantly downregulated Cdc42 by directly binding its 3′ untranslated regions, and induced G1 cell cycle arrest, leading to a significant decrease in cell growth, migration, and invasion in vitro. Therefore, our findings demonstrated that miR-195 may act as a tumor suppressor in ESCC by targeting Cdc42.  相似文献   

11.
12.
Metallothionein (MT1M) belongs to a family of cysteine-rich cytosolic protein and has been reported to be a tumor suppressor gene in multiple cancers. However, its role in esophageal carcinoma carcinogenesis remains unclear. In this study, MT1M expression was correlated with tumor type, stage, drinking and smoking history, as well as patient survival. We also studied the regulation and biological function of MT1M in esophageal squamous cell carcinoma (ESCC). We have found that MT1M is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues. Furthermore, restoration of expression by treatment with the demethylation agent A + T showed that MT1M downregulation might be closely related to hypermethylation in its promoter region. Over-expression of MT1M in ESCC cells significantly altered cell morphology, induced apoptosis, and reduced colony formation, cell viability, migration and epithelial-mesenchymal transition. Moreover, based on reactive oxygen species (ROS) levels, a superoxide dismutase 1 (SOD1) activity assay and protein analysis, we verified that the tumor-suppressive function of MT1M was at least partially caused by its upregulation of ROS levels, downregulation of SOD1 activity and phosphorylation of the SOD1 downstream pathway PI3K/AKT. In conclusion, our results demonstrated that MT1M was a novel tumor-suppressor in ESCC and may be disrupted by promoter CpG methylation during esophageal carcinogenesis.  相似文献   

13.
14.
Receptor for Activated C Kinase, RACK1, is an adaptor protein that regulates signaling via Src and PKC-dependent pathways, and has been implicated in cell migration. In this study we demonstrate novel functions for RACK1 in regulating adhesion dynamics during cell migration. We report that cells lacking RACK1 are less motile and show reduced dynamics of paxillin and talin at focal complexes. To investigate the role of the RACK1/Src interactions in adhesion dynamics, we used RACK1 in which the putative Src binding site has been mutated (RACK Y246F). RACK1-deficient cells showed enhanced c-Src activity that was rescued by expression of wild type RACK1, but not by RACK Y246F. Expression of wild type RACK1, but not RACK Y246F, was also able to rescue the adhesion and migration defects observed in the RACK1-deficient cells. Furthermore, our findings indicate that RACK1 functions to regulate paxillin phosphorylation and that its effects on paxillin dynamics require the Src-mediated phosphorylation of tyrosine 31/118 on paxillin. Taken together, these findings support a novel role for RACK1 as a key regulator of cell migration and adhesion dynamics through the regulation of Src activity, and the modulation of paxillin phosphorylation at early adhesions.  相似文献   

15.
Substantial evidence has demonstrated that platelet-derived growth factor-D (PDGF-D) is tightly associated with the development and progression of tumors. However, its biological functions in esophageal squamous cell carcinoma (ESCC) remain to be delineated. In this study, we found that expressions of PDGF-D mRNA and protein in ESCC tissues and cells were significantly higher than that in normal esophageal epithelial tissues (P < 0.05), further investigation showed that PDGF-D protein level in EC1 cells was obviously higher than those in EC9706 and Eca109 cells (P < 0.05). Elevated PDGF-D level was closely associated with TNM staging, tumor differentiation and lymph node metastasis (P < 0.05), but not related to the patients’ age and gender (P > 0.05). In addition, down-regulation of PDGF-D expression markedly inhibited proliferation, reduced invasion and induced apoptosis in EC1 cells. More importantly, reduced PDGF-D level evoked the down-regulation of p65 and p-IκBα proteins and elevation of IκBα protein of NF-κB pathway, accompanied with the decreases of bcl-2 and MMP-9 protein expressions and increases of bax protein level and caspase-3 activities. Correctively, our data suggest that PDGF-D plays pivotal roles in the development and progression of ESCC, and combinations with PDGF-D and NF-κB pathway may be effective and feasible molecular targets for therapy of ESCC.  相似文献   

16.
To evaluate the association of the plasma riboflavin level in Kazak esophageal cancer patients and their riboflavin transporter (C20orf54) gene statuses. Plasma riboflavin levels were detected by high performance liquid chromatography in Kazak patients with esophageal squamous cell carcinoma (ESCC) and healthy controls. C20orf54 mRNA and protein expression were analyzed by real-time fluorogenic quantitative polymerase chain reaction and immunohistochemistry in samples from 61 ESCC patients consisting of both tumor and normal tissue, respectively. C20orf54 mRNA expression was decreased in ESCC (0.279 ± 0.102) than in normal counterpart tissue (0.479 ± 0.287; P = 0.049) significantly. Tumors exhibited low C20orf54 protein expression (42.6, 26.2, 18.0 and 13.1 % for no C20orf54 staining, weak staining, medium staining and strong staining, respectively), which was significantly lower than that in the normal mucous membrane (13.1, 26.2, 41.0 and 19.7 % for no C20orf54 staining, weak staining, medium staining and strong staining, respectively). Defective expression of C20orf54 in tumor cells was significantly associated with poor differentiation. However, other parameters such as depth of invasion and lymph node metastasis had no significant relationship with C20orf54 expression. The average blood concentration of riboflavin was 2.6468 ± 1.3474 ng/ml in ESCC patients lower than control group (4.2960 ± 3.2293 ng/ml, P = 0.015). A positive correlation of plasma riboflavin levels with defective expression of C20orf54 protein was found in ESCC patients (F = 8.626; P = 0.038). Defective expression of C20orf54 is associated with the development of Kazak esophageal squamous cell carcinoma and this may represent a mechanism underlying the decreased plasma riboflavin levels in ESCC.  相似文献   

17.
Esophageal squamous cell carcinoma (ESCC), the most frequent esophageal cancer (EC) subtype, entails dismal prognosis. Hypoxia, a common feature of advanced ESCC, is involved in resistance to radiotherapy (RT). RT response in hypoxia might be modulated through epigenetic mechanisms, constituting novel targets to improve patient outcome. Post-translational methylation in histone can be partially modulated by histone lysine demethylases (KDMs), which specifically removes methyl groups in certain lysine residues. KDMs deregulation was associated with tumor aggressiveness and therapy failure. Thus, we sought to unveil the role of Jumonji C domain histone lysine demethylases (JmjC-KDMs) in ESCC radioresistance acquisition. The effectiveness of RT upon ESCC cells under hypoxic conditions was assessed by colony formation assay. KDM3A/KDM6B expression, and respective H3K9me2 and H3K27me3 target marks, were evaluated by RT-qPCR, Western blot, and immunofluorescence. Effect of JmjC-KDM inhibitor IOX1, as well as KDM3A knockdown, in in vitro functional cell behavior and RT response was assessed in ESCC under hypoxic conditions. In vivo effect of combined IOX1 and ionizing radiation treatment was evaluated in ESCC cells using CAM assay. KDM3A, KDM6B, HIF-1α, and CAIX immunoexpression was assessed in primary ESCC and normal esophagus. Herein, we found that hypoxia promoted ESCC radioresistance through increased KDM3A/KDM6B expression, enhancing cell survival and migration and decreasing DNA damage and apoptosis, in vitro. Exposure to IOX1 reverted these features, increasing ESCC radiosensitivity and decreasing ESCC microtumors size, in vivo. KDM3A was upregulated in ESCC tissues compared to the normal esophagus, associating and colocalizing with hypoxic markers (HIF-1α and CAIX). Therefore, KDM3A upregulation in ESCC cell lines and primary tumors associated with hypoxia, playing a critical role in EC aggressiveness and radioresistance. KDM3A targeting, concomitant with conventional RT, constitutes a promising strategy to improve ESCC patients’ survival.Subject terms: Predictive markers, Cancer  相似文献   

18.
Cigarette smoke is a risk factor for esophageal squamous cell carcinoma (ESCC). It contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. The nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the strongest carcinogens in tobacco and our previous studies have shown its proliferation-promoting role in the progression of ESCC. Recently, NNK was identified as an agonist for both beta1- and beta2-adrenoceptors. Thus, we hypothesized that the cancer-promoting effect of NNK was likely mediated through beta-adrenoceptors in ESCC. Therefore, we investigated the comprehensive role of NNK in ESCC in vitro and in vivo, and found that NNK promoted many oncogenic features including ESCC cell proliferation and xenograft tumor growth as well as ESCC cell migration and invasion. Western blotting showed that NNK induced significant up-regulation of phosphorylated ERK1/2, cyclin D1, Bcl-2, and vascular endothelial growth factor as well as down-regulation of Bax. Importantly, the oncogenic effects of NNK in ESCC and the altered protein expression were reversed to some extent by down-regulation of beta1- and beta2-adrenoceptors with the beta2-adrenoceptor showing a greater rescue effect. Taken together, our in vitro and in vivo results demonstrate that NNK plays an oncogenic role in ESCC through beta-adrenoceptors. Furthermore, beta2-adrenoceptor might play a more important role in this process. Our findings might provide a chemoprevention and therapy strategy for cigarette smoke-related ESCC carcinogenesis.  相似文献   

19.
20.
BackgroundEzrin, links the plasma membrane to the actin cytoskeleton, and plays an important role in the development and progression of human esophageal squamous cell carcinoma (ESCC). However, the roles of ezrin S66 phosphorylation in tumorigenesis of ESCC remain unclear.MethodsDistribution of ezrin in membrane and cytosol fractions was examined by analysis of detergent-soluble/-insoluble fractions and cytosol/membrane fractionation. Both immunofluorescence and live imaging were used to explore the role of ezrin S66 phosphorylation in the behavior of ezrin and actin in cell filopodia. Cell proliferation, migration and invasion of ESCC cells were investigated by proliferation and migration assays, respectively. Tumorigenesis, local invasion and metastasis were assessed in a nude mouse model of regional lymph node metastasis.ResultsEzrin S66 phosphorylation enhanced the recruitment of ezrin to the membrane in ESCC cells. Additionally, non-phosphorylatable ezrin (S66A) significantly prevented filopodia formation, as well as caused a reduction in the number, length and lifetime of filopodia. Moreover, functional experiments revealed that expression of non-phosphorylatable ezrin (S66A) markedly suppressed migration and invasion but not proliferation of ESCC cells in vitro, and attenuated local invasion and regional lymph node metastasis, but not primary tumor growth of ESCC cells in vivo.ConclusionEzrin S66 phosphorylation enhances filopodia formation, contributing to the regulation of invasion and metastasis of esophageal squamous cell carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号