首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pulsed EPR methods of electron spin echo envelope modulation (ESEEM) and electron spin echo-electron nuclear double resonance (ESE-ENDOR) are used to investigate the proximity of exchangeable hydrogens around the paramagnetic S(2)-state Mn cluster of the photosystem II oxygen-evolving complex. Although ESEEM and ESE-ENDOR are both pulsed electron paramagnetic resonance techniques, the specific mechanisms by which nuclear spin transitions are observed are quite different. We are able to generate good simulations of both (1)H ESE-ENDOR and (2)H ESEEM signatures of exchangeable hydrogens at the S(2)-state cluster. The convergence of simulation parameters for both methods provides a high degree of confidence in the simulations. Several exchangeable protons-deuterons with strong dipolar couplings are observed. In the simulations, two of the close ( approximately 2.5 A) hydrogen nuclei exhibit strong isotropic couplings and are therefore most probably associated with direct substrate ligation to paramagnetic Mn. Another two of the close ( approximately 2.7 A) hydrogen nuclei show no isotropic couplings and are therefore most probably not contained in Mn ligands. We suggest that these proximal hydrogens may be associated with a Ca(2+)-bound substrate, as indicated in recent mechanistic proposals for O(2) formation.  相似文献   

2.
The catalytic sites of beef heart mitochondrial F1-ATPase were studied by electron spin echo envelope modulation (ESEEM) spectroscopy, using Mn(II) as a paramagnetic probe, which replaces the naturally occurring Mg(II), maintaining the enzyme catalytic activity. F1-ATPase was purified from beef heart mitochondria. A protein still containing three endogenous nucleotides, named MF1(1,2), is obtained under milder conditions, whereas a harsher treatment gives a fully depleted F1, named MF1(0,0). Several samples were prepared, loading MF1(0,0) or MF1(1,2) with Mn(II) or MnIIADP in both substoichiometric and excess amounts. When MF1(1,2) is loaded with Mn(II) in a 1:0.8 ratio, the FT-ESEEM spectrum shows evidence of a nitrogen interacting with the metal, while this interaction is not present in MF1(0,0) + Mn(II) in a 1:0.8 ratio. However, when MF1(0,0) is loaded with 2.4 Mn(II), the FT-ESEEM spectrum shows a metal-nitrogen interaction resembling that present in MF1(1,2) + Mn(II) in a 1:0.8 ratio. These results strongly support the role of the metal alone in shaping and structuring the catalytic sites of the enzyme. When substoichiometric ADP is added to MF1(1,2) preloaded with 0.8 equiv of Mn(II), the ESEEM spectra show evidence of a phosphorus nucleus coupled to the metal, indicating that the nucleotide phosphate binding to Mn(II) occurs in a catalytic site. Generally, 14N coordination to the metal is clearly identified in the ESEEM spectra of all the samples containing more than one metal equivalent. One point of note is that the relevant nitrogen-containing ligand(s), responsible for the signals in the ESEEM spectra, has not yet been identified in the available X-ray structures.  相似文献   

3.
Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is used to ascertain the nature of the bonding interactions of various active site amino acids with the Mn ions that compose the oxygen-evolving cluster (OEC) in photosystem II (PSII) from the cyanobacterium Synechocystis sp. PCC 6803 poised in the S(2) state. Spectra of natural isotopic abundance PSII ((14)N-PSII), uniformly (15)N-labeled PSII ((15)N-PSII), and (15)N-PSII containing (14)N-histidine ((14)N-His/(15)N-PSII) are compared. These complementary data sets allow for a precise determination of the spin Hamiltonian parameters of the postulated histidine nitrogen interaction with the Mn ions of the OEC. These results are compared to those from a similar study on PSII isolated from spinach. Upon mutation of His332 of the D1 polypeptide to a glutamate residue, all isotopically sensitive spectral features vanish. Additional K(a)- and Q-band ESEEM experiments on the D1-D170H site-directed mutant give no indication of new (14)N-based interactions.  相似文献   

4.
The S2 state electron paramagnetic resonance (EPR) multiline signal of Photosystem II has been simulated at Q-band (35 Ghz), X-band (9 GHz) and S-band (4 GHz) frequencies. The model used for the simulation assumes that the signal arises from an essentially magnetically isolated MnIII-MnIV dimer, with a ground state electronic spin ST = 1/2. The spectra are generated from exact numerical solution of a general spin Hamiltonian containing anisotropic hyperfine and quadrupolar interactions at both Mn nuclei. The features that distinguish the multiline from the EPR spectra of model manganese dimer complexes (additional width of the spectrum (195 mT), additional peaks (22), internal "superhyperfine" structure) are plausibly explained assuming an unusual ligand geometry at both Mn nuclei, giving rise to normally forbidden transitions from quadrupole interactions as well as hyperfine anisotropy. The fitted parameters indicate that the hyperfine and quadrupole interactions arise from Mn ions in low symmetry environments, corresponding approximately to the removal of one ligand from an octahedral geometry in both cases. For a quadrupole interaction of the magnitude indicated here to be present, the MnIII ion must be 5-coordinate and the MnIV 5-coordinate or possibly have a sixth, weakly bound ligand. The hyperfine parameters indicate a quasi-axial anisotropy at MnIII, which while consistent with Jahn-Teller distortion as expected for a d4 ion, corresponds here to the unpaired spin being in the ligand deficient, z direction of the molecular reference axis. The fitted parameters for MnIV are very unusual, showing a high degree of anisotropy not expected in a d3 ion. This degree of anisotropy could be qualitatively accounted for by a histidine ligand providing pi backbonding into the metal dxy orbital, together with a weakly bound or absent ligand in the x direction.  相似文献   

5.
A detailed analysis of the EPR signatures at X-band and Q-band of an enzyme (SoxB) involved in sulfur oxidation from Paracoccus pantotrophus is presented. EPR spectra are attributed to an exchange-coupled dimanganese Mn2(II,II) complex. An antiferromagnetic exchange interaction of J=?7.0 (±1) cm?1 (H=?2JS 1 S 2 ) is evidenced by a careful examination of the temperature dependence of the EPR spectra. The spin Hamiltonian parameters for a total spin of S T =1, 2 and 3 are obtained and an inter-manganese distance of 3.4 (±0.1) Å is estimated. The comparison with exchange coupling and inter-manganese distance data of other dimanganese proteins and model compounds leads to a tentative assignment of the Mn bridging ligands to bis(μ-hydroxo) (μ-carboxylato).  相似文献   

6.
A. Seelig  B. Ludwig  J. Seelig  G. Schatz 《BBA》1981,636(2):162-167
The two-subunit cytochrome c oxidase from Paracoccus denitrificans contains two heme a groups and two copper atoms. However, when the enzyme is isolated from cells grown on a commonly employed medium, its electron paramagnetic resonance (EPR) spectrum reveals not only a Cu(II) powder pattern, but also a hyperfine pattern from tightly bound Mn(II). The pure Mn(II) spectrum is observed at ?40°C; the pure Cu(II) spectrum can be seen with cytochrome c oxidase from P. denitrificans cells that had been grown in a Mn(II)-depleted medium. This Cu(II) spectrum is very similar to that of cytochrome c oxidase from yeast or bovine heart. Manganese is apparently not an essential component of P. denitrificans cytochrome c oxidase since it is present in substoichiometric amounts relative to copper or heme a and since the manganese-free enzyme retains essentially full activity in oxidizing ferrocytochrome c. However, the manganese is not removed by EDTA and its EPR spectrum responds to the oxidation state of the oxidase. In contrast, manganese added to the yeast oxidase or to the manganese-free P. denitrificans enzyme can be removed by EDTA and does not respond to the oxidation state of the enzyme. This suggests that the manganese normally associated with P. denitrificans cytochrome c oxidase is incorporated into one or more internal sites during the biogenesis of the enzyme.  相似文献   

7.
The tetranuclear manganese cluster in photosystem II is ligated by one or more histidine residues, as shown by an electron spin echo envelope modulation (ESEEM) study conducted with [(15)N]histidine-labeled photosystem II particles isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 [Tang, X.-S., Diner, B. A., Larsen, B. S., Gilchrist, M. L., Jr., Lorigan, G. A., and Britt, R. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 704-708]. One of these residues may be His332 of the D1 polypeptide. Photosystem II particles isolated from the Synechocystis mutant D1-H332E exhibit an altered S(2) state multiline EPR signal that has more hyperfine lines and narrower splittings than the corresponding signal in wild-type PSII particles [Debus, R. J., Campbell, K. A., Peloquin, J. M., Pham, D. P., and Britt, R. D. (2000) Biochemistry 39, 470-478]. These D1-H332E PSII particles are also unable to advance beyond an altered S(2)Y(Z)(*) state, and the quantum yield for forming the S(2) state is very low, corresponding to an 8000-fold slowing of the rate of Mn oxidation by Y(Z)(*). These observations are consistent with His332 being close to the Mn cluster and modulating the redox properties of both the Mn cluster and tyrosine Y(Z). To determine if D1-His332 ligates the Mn cluster, we have conducted an ESEEM study of D1-H332E PSII particles. The histidyl nitrogen modulation observed near 5 MHz in ESEEM spectra of the S(2) state multiline EPR signal of wild-type PSII particles is substantially diminished in D1-H332E PSII particles. This result is consistent with ligation of the Mn cluster by D1-His332. However, alternate explanations are possible. These are presented and discussed.  相似文献   

8.
Yu H  Aznar CP  Xu X  Britt RD 《Biochemistry》2005,44(36):12022-12029
The effect of adding azide to photosystem II (PS II) membrane samples (BBY preparation), with or without chloride, has been investigated using continuous wave (CW) and pulsed EPR spectroscopy. In the BBY samples with 25 mM chloride, we observed that the inhibition induced by azide is partly recovered by the addition of bicarbonate. Electron spin-echo envelope modulation (ESEEM) was used to search for spin transitions of 15N nuclei magnetically coupled to the S2 state Mn cluster (multiline EPR signal form) in 15N (single terminal label) azide-treated samples with negative results. However, an 15N ESEEM peak was observed in parallel chloride-depleted PS II samples when the 15N-labeled azide is added. However, this peak is absent in chloride-depleted samples incubated in buffer containing both chloride and [15N]azide. Thus these results demonstrate an azide binding site in the immediate vicinity of the Mn cluster, and since this site appears to be competitive with chloride, these results provide further evidence that chloride is bound proximal to the Mn cluster as well. Discussion on the possible interplay between azide, chloride, and bicarbonate is provided.  相似文献   

9.
There have recently been advances in methods for detecting local secondary structures of membrane protein using electron paramagnetic resonance (EPR). A three pulsed electron spin echo envelope modulation (ESEEM) approach was used to determine the local helical secondary structure of the small hole forming membrane protein, S21 pinholin. This ESEEM approach uses a combination of site-directed spin labeling and 2H-labeled side chains. Pinholin S21 is responsible for the permeabilization of the inner cytosolic membrane of double stranded DNA bacteriophage host cells. In this study, we report on the overall global helical structure using circular dichroism (CD) spectroscopy for the active form and the negative-dominant inactive mutant form of S21 pinholin. The local helical secondary structure was confirmed for both transmembrane domains (TMDs) for the active and inactive S21 pinholin using the ESEEM spectroscopic technique. Comparison of the ESEEM normalized frequency domain intensity for each transmembrane domain gives an insight into the α-helical folding nature of these domains as opposed to a π or 310-helix which have been observed in other channel forming proteins.  相似文献   

10.
Simulation of X- and Q-band electron paramagnetic resonance (EPR) spectra of an unsymmetric dinuclear [Mn(2)(II,III)L(mu-OAc)(2)]ClO(4) complex (1), (L is the dianion of 2-{[N,N-bis(2-pyridylmethyl)amino]methyl}-6-{[N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N-(2-pyridylmethyl)amino]methyl}-4-methylphenol) was performed using one consistent set of simulation parameters. Rhombic g-tensors and hyperfine tensors were necessary to obtain satisfactory simulation of the EPR spectra. The anisotropy of the effective hyperfine tensors of each individual (55)Mn ion was further analyzed in terms of intrinsic hyperfine tensors. Detailed analysis shows that the hyperfine anisotropy of the Mn(III) ion is a result of the Jahn-Teller effect and thus an inherent character. In contrast, the anomalous hyperfine anisotropy of the Mn(II) ion is attributed as being transferred from the Mn(III) ion through the spin exchange interaction. The anisotropy parameter for the Mn(II) is deduced as D(II)=-1.26+/-0.2cm(-1). This is the first reported D(II) value for a Mn(II) ion in a weakly exchange coupled mixed-valence Mn(2)(II,III) complex with a bis-mu-acetato-bridge. The [see text] electronic configuration of the Mn(III) ion in 1 is revealed by the negative sign of its intrinsic hyperfine tensor anisotropy, Deltaa(III)=a(z)-a(x,y)=-46cm(-1). Lower spectral resolution of the Q-band EPR spectrum as compared to the X-band EPR spectrum is associated to large line width broadening of the x- and y-components in contrast to the z-component. The origins of the unequal distribution of line width between the z- and x-, y-components are discussed.  相似文献   

11.
Extraction of the Mn-cluster from photosystem II (PS II) inhibits the main bands of thermoluminescence and induces a new AT-band at –20°C. This band is attributed to the charge recombination between acceptor QA and a redoxactive histidine residue on the donor side of PS II. The effect of Mn(II) and Fe(II) cations as well as the artificial donors diphenylcarbazide and hydroxylamine on the AT-band of thermoluminescence was studied to elucidate the role of the redoxactive His residue in binding to the Mn(II) and Fe(II). At the Mn/PS II reaction center (RC) ratio of 90 : 1 and Fe/PS II RC ratio of 120 : 1, treatment with Mn(II) and Fe(II) causes only 60% inhibition of the AT-band. Preliminary exposure of Mn-depleted PS II preparations to light in the presence of Mn(II) and Fe(II) causes binding of the cations to the high-affinity Mn-binding site, thereby inhibiting oxidation of the His residue involved in the AT -band formation. The efficiency of the AT-band quenching induced by diphenylcarbazide and hydroxylamine is almost an order of magnitude higher than the quenching efficiency of Mn(II) and Fe(II). Our results suggest that the redox-active His is not a ligand of the high-affinity site and does not participate in the electron transport from Mn(II) and Fe(II) to YZ . The concentration dependences of the AT-band inhibition by Mn(II) and Fe(II) coincide with each other, thereby implying specific interaction of Fe(II) with the donor side of PS II.  相似文献   

12.
The Mo(V) forms of the Tyr343Phe (Y343F) mutant of human sulfite oxidase (SO) have been investigated by continuous wave (CW) and variable frequency pulsed EPR spectroscopies as a function of pH. The CW EPR spectrum recorded at low-pH (∼6.9) has g-values similar to those known for the low-pH form of the native vertebrate SO (original lpH form); however, unlike the spectrum of original lpH SO, it does not show any hyperfine splittings from a nearby exchangeable proton. The detailed electron spin echo (ESE) envelope modulation (ESEEM) and pulsed electron-nuclear double resonance (ENDOR) experiments also did not reveal any nearby protons that could belong to an exchangeable ligand at the molybdenum center. These results suggest that under low-pH conditions the active site of Y343F SO is in the “blocked” form, with the Mo(V) center coordinated by sulfate. With increasing pH the EPR signal from the “blocked” form decreases, while a signal similar to that of the original lpH form appears and becomes the dominant signal at pH >9. In addition, both the CW EPR and ESE-detected field-sweep spectra reveal a considerable contribution from a signal similar to that usually detected for the high-pH form of native vertebrate SO (original hpH form). The nearby exchangeable protons in both of the component forms observed at high-pH were studied by the ESEEM spectroscopy. These results indicate that the Y343F mutation increases the apparent pKa of the transition from the lpH to hpH forms by ∼2 pH units.  相似文献   

13.
The binuclear Cu(A) site engineered into Pseudomonas aeruginosa azurin has provided a Cu(A)-azurin with a well-defined crystal structure and a CuSSCu core having two equatorial histidine ligands, His120 and His46. The mutations His120Asn and His120Gly were made at the equatorial His120 ligand to understand the histidine-related modulation to Cu(A), notably to the valence delocalization over the CuSSCu core. For these His120 mutants Q-band electron nuclear double resonance (ENDOR) and multifrequency electron paramagnetic resonance (EPR) (X, C, and S-band), all carried out under comparable cryogenic conditions, have provided markedly different electronic measures of the mutation-induced change. Q-band ENDOR of cysteine C(beta) protons, of weakly dipolar-coupled protons, and of the remaining His46 nitrogen ligand provided hyperfine couplings that were like those of other binuclear mixed-valence Cu(A) systems and were essentially unperturbed by the mutation at His120. The ENDOR findings imply that the Cu(A) core electronic structure remains unchanged by the His120 mutation. On the other hand, multifrequency EPR indicated that the H120N and H120G mutations had changed the EPR hyperfine signature from a 7-line to a 4-line pattern, consistent with trapped-valence, Type 1 mononuclear copper. The multifrequency EPR data imply that the electron spin had become localized on one copper by the His120 mutation. To reconcile the EPR and ENDOR findings for the His120 mutants requires that either: if valence localization to one copper has occurred, the spin density on the cysteine sulfurs and the remaining histidine (His46) must remain as it was for a delocalized binuclear Cu(A) center, or if valence delocalization persists, the hyperfine coupling for one copper must markedly diminish while the overall spin distribution on the CuSSCu core is preserved.  相似文献   

14.
The Mn donor complex in the S1 and S2 states and the iron-quinone acceptor complex (Fe2+-Q) in O2-evolving photosystem II (PS II) preparations from a thermophilic cyanobacterium, Synechococcus sp., have been studied with X-ray absorption spectroscopy and electron paramagnetic resonance (EPR). Illumination of these preparations at 220-240 K results in formation of a multiline EPR signal very similar to that assigned to a Mn S2 species observed in spinach PS II, together with g = 1.8 and 1.9 EPR signals similar to the Fe2+-QA- acceptor signals seen in spinach PS II. Illumination at 110-160 K does not produce the g = 1.8 or 1.9 EPR signals, nor the multiline or g = 4.1 EPR signals associated with the S2 state of PS II in spinach; however, a signal which peaks at g = 1.6 appears. The most probable assignment of this signal is an altered configuration of the Fe2+-QA- complex. In addition, no donor signal was seen upon warming the 140 K illuminated sample to 215 K. Following continuous illumination at temperatures between 140 and 215 K, the average X-ray absorption Mn K-edge inflection energy changes from 6550 eV for a dark-adapted (S1) sample to 6551 eV for the illuminated (S2) sample. The shift in edge inflection energy indicates an oxidation of Mn, and the absolute edge inflection energies indicate an average Mn oxidation state higher than Mn(II). Upon illumination a significant change was observed in the shape of the features associated with 1s to 3d transitions. The S1 spectrum resembles those of Mn(III) complexes, and the S2 spectrum resembles those of Mn(IV) complexes. The extended X-ray absorption fine structure (EXAFS) spectrum of the Mn complex is similar in the S1 and S2 states. Simulations indicate O or N ligands at 1.75 +/- 0.05 A, transition metal neighbor(s) at 2.73 +/- 0.05 A, which are assumed to be Mn, and terminal ligands which are probably N and O at a range of distances around 2.2 A. The Mn-O bond length of 1.75 A and the transition metal at 2.7 A indicate the presence of a di-mu-oxo-bridged Mn structure. Simulations indicate that a symmetric tetranuclear cluster is unlikely to be present, while binuclear, trinuclear, or highly distorted tetranuclear structures are possible. The striking similarity of these results to those from spinach PS II suggests that the structure of the Mn complex is largely conserved across evolutionarily diverse O2-evolving photosynthetic species.  相似文献   

15.
Detailed absorbance difference spectra are reported for the Photosystem II acceptor Q, the secondary donor Z, and the donor involved in photosynthetic oxygen evolution which we call M. The spectra of Z and Q could be resolved by analysis of flash-induced kinetics of prompt and delayed fluorescence, EPR signal IIf and absorbance changes in Tris-washed system II preparations in the presence of ferricyanide and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). The spectrum of Z oxidation consists mainly of positive bands at 260, 300 and 390–450 nm on which a chlorophyll a band shift around 438 nm is superimposed, and is largely pH-independent as is also the case for the spectrum of Q reduction. The re-reduction of Z+ occurred in the millisecond time range, and could be explained by a competition between back reaction with Q? (120 ms at pH 6.0) and reduction by ferrocyanide. When the Tris treatment is omitted the preparations evolve oxygen, and the photoreduction of Q (with DCMU present) is accompanied by the oxidation of M. The Q spectrum being known, the spectrum of the oxidation of M could be determined as well. It consists of a broad, asymmetric increase peaking near 305 nm and of a Chl a band shift, which is about the same as that accompanying Z in Tris-washed system II. Comparison with spectra of model compounds suggests that Z is a bound plastoquinol which is oxidized to the semiquinone cation and that the oxidation of M is an Mn(III) → Mn(IV) transition.  相似文献   

16.
EPR spectra were recorded for methionine aminopeptidase from Escherichia coli (EcMetAP-I) samples (~2.5 mM) to which one and two equivalents of Mn(II) were added (the latter is referred to as [MnMn(EcMetAP-I)]). The spectra for each sample were indistinguishable except that the spectrum of [MnMn(EcMetAP-I)] was twice as intense. The EPR spectrum of [MnMn(EcMetAP-I)] exhibited the characteristic six-line g2 EPR signal of mononuclear Mn(II) with Aav(55Mn)=9.3 mT (93 G) and exhibited Curie-law temperature dependence. This signal is typical of Mn(II) in a ligand sphere comprising oxygen and/or nitrogen atoms. Other features in the spectrum were observed only as the temperature was raised from that of liquid helium. The temperature dependences of these features are consistent with their assignment to excited state transitions in the S=1, 2 ... 5 non-Kramers doublets, due to two antiferromagnetically coupled Mn(II) ions with an S=0 ground state. This assignment is supported by the observation of a characteristic 4.5 mT hyperfine pattern, and by the presence of signals in the parallel mode consistent with a non-Kramers spin ladder. Upon the addition of the anti-angiogenesis agent fumagillin to [MnMn(EcMetAP-I)], very small changes were observed in the EPR spectrum. MALDI-TOF mass spectrometry indicated that fumagillin was, however, covalently coordinated to EcMetAP-I. Therefore, the inhibitory action of this anti-angiogenesis agent on EcMetAP-I appears to involve covalent binding to a polypeptide component at or near the active site rather than direct binding to the metal ions.  相似文献   

17.
Extraction conditions have been found which result in the retention of managanese to the 33–34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228–236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33–34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4–5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 ± 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45–55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited spin states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein. The intrinsically unstable Mn2(II,III) oxidation state observed in model compounds favors the assignment of the stable protein oxidation state to the Mn2(III,III) formulation. This protein exhibits characteristics consistent with an identification with the long-sought Mn site for photosynthetic O2 evolution. An EPR spectrum having qualitatively similar features is observable in dark-adapted intact, photosynthetic membranes (Dismukes, G.C., Abramowicz, D.A., Ferris, F.K., Mathur, P., Upadrashta, B. and Watnick, P. (1983) in The Oxygen-Evolving System of Plant Photosynthesis (Inoue, Y., ed.), pp. 145–158, Academic Press, Tokyo) and in detergent-extracted, O2-evolving Photosystem-II particles (Abramowicz, D.A., Raab, T.K. and Dismukes, G.C. (1984) Proceedings of the Sixth International Congress on Photosynthesis (Sybesma, C., ed.), Vol. I, pp. 349–354, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands), thus establishing a direct link with the O2 evolving complex.  相似文献   

18.
The binuclear copper in the active site of Carcinus maenas hemocyanin has been substituted with one EDTA-resistant Co(II) per 75 000 Mr by reconstitution of the apo protein. Specific cobalt substitution at the copper binding site is demonstrated from the optical spectral changes directly correlated with the amount of Co(II) bound to the protein, the ellipticity in CD spectra in the near UVVis region, and the efficiency of tryptophan fluorescence quenching. The optical absorption spectrum of the cobalt-substituted protein is characterized by a band pattern attributable to d-d transitions of the metal ion. Both the position of the wavelength maximum (568 nm) and the molar extinction coefficient (≅300 M-1 cm-1) are typical of a four-coordinate, pseudo-tetrahedral Co(II) center.Optical titrations indicate that Cl-, Br-, N3-, SCN-, and CN- bind to Co(II)Hc, each with a stoichiometry of 1:1 per metal center. The apparent stability constants determined from Hill plots of titration data decrease in the order CN- » N3- ≅ SCN- >Cl->Br-. Low temperature EPR studies demonstrate that at pH 7, the cobalt is high spin both in the presence and absence of anionic ligands. A low spin species is formed at pH 9 in the presence of cyanide. The spectrum of this latter complex exhibits superhyperfine structure indicative of metal ligation to 14N supplied by the protein. Direct ligation of cyanide to cobalt is demonstrated by additional spectral splitting observed when this complex is formed using 13C-labelled CN-.  相似文献   

19.
alpha-lactalbumin has at least three distinct cation binding regions: a Ca(II)-Gd(III) site, a Cu(II)-Zn(II) site and a VO2+ site as observed from electron paramagnetic resonance (EPR) studies of complexes with the bovine protein. Gadolinium, which bound to the calcium site of the protein with a subnanomolar dissociation constant, yielded EPR spectra at 9.5 GHz (X-band) that exhibited features from g = 8 to g = 2. At 35 GHz (Q-band) the central fine structure transition (Ms = 1/2----Ms = -1/2) gave a well-defined powder pattern. The zero-field splitting was large, as reflected in the second-order splitting of the central fine structure transition of about 1 kG. There was also evidence for additional, low affinity binding site(s) for Gd(III). Addition of either Zn(II) or Al(III) did not affect the amplitudes or positions of the bound Gd(III) EPR spectrum. The Cu(II)-alpha-lactalbumin complex gave a typical axially symmetric spectrum (g parallel = 2.260, g perpendicular = 2.056, A parallel = 171 G) with a partially resolved superhyperfine interaction attributable to at least one directly coordinated nitrogen ligand. Addition of Cu(II) to Gd(III)-alpha-lactalbumin gave an EPR spectrum that was a superposition of signals from the individual Gd(III)- and Cu(II)-alpha-LA spectra. The absence of any magnetic interactions in the Gd(III)-Cu(II)-alpha-lactalbumin species indicated that the two cation sites were more than 10 A apart. On the other hand, addition of Zn(II) to Cu(II)-alpha-lactalbumin gave a set of EPR lines due to free or loosely bound Cu(II), confirming that the Cu(II) was displaced by zinc.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigate the electronic state of Mn(III) center with an integer electron spin S=2 in the manganese(III) protoporphyrin IX reconstituted myoglobin, Mn(III)Mb, by means of multi-frequency electron paramagnetic resonance (MFEPR) spectroscopy. Using a bimodal cavity resonator, X-band EPR signal from Mn(III) center in the Mn(III)Mb was observed near zero-field region. The temperature dependence of this signal indicates a negative axial zero-field splitting value, D<0. The EPR analysis shows that this signal is attributed to the transition between the closely spaced M(s)=+/-2 energy levels for the z-axis, corresponding to the heme normal. To determine the zero-field splitting (ZFS) parameters, EPR experiments on the Mn(III)Mb were performed at various temperatures for some frequencies between 30GHz and 130GHz and magnetic fields up to 14T. We observed several EPR spectra which are analyzed with a spin Hamiltonian for S=2, yielding highly accurate ZFS parameters; D=-3.79cm(-1) and |E|=0.08cm(-1) for an isotropic g=2.0. These ZFS parameters are compared with those in some Mn(III) complexes and Mn(III) superoxide dismutase (SOD), and effects on these parameters by the coordination and the symmetry of the ligands are discussed. To the best of our knowledge, these EPR spectra in the Mn(III)Mb are the very first MFEPR spectra at frequencies higher than Q-band in a metalloprotein with an integer spin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号