首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xie  Min  Wang  Weihua  Zhang  Weiwen  Chen  Lei  Lu  Xuefeng 《Applied microbiology and biotechnology》2017,101(3):905-919

Cyanobacteria are photosynthetic microorganisms using solar energy, H2O, and CO2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  相似文献   

2.
3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. So far large-scale production of 3-HP has been mainly through petroleum-based chemical processes, whose sustainability and environmental issues have attracted widespread attention. With the ability to fix CO2 directly, cyanobacteria have been engineered as an autotrophic microbial cell factory to produce fuels and chemicals. In this study, we constructed the biosynthetic pathway of 3-HP in cyanobacterium Synechocystis sp. PCC 6803, and then optimized the system through the following approaches: i) increasing expression of malonyl-CoA reductase (MCR) gene using different promoters and cultivation conditions; ii) enhancing supply of the precursor malonyl-CoA by overexpressing acetyl-CoA carboxylase and biotinilase; iii) improving NADPH supply by overexpressing the NAD(P) transhydrogenase gene; iv) directing more carbon flux into 3-HP by inactivating the competing pathways of PHA and acetate biosynthesis. Together, the efforts led to a production of 837.18 mg L−1 (348.8 mg/g dry cell weight) 3-HP directly from CO2 in Synechocystis after 6 days cultivation, demonstrating the feasibility photosynthetic production of 3-HP directly from sunlight and CO2 in cyanobacteria. In addition, the results showed that overexpression of the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) gene from Anabaena sp. PCC 7120 and Synechococcus sp. PCC 7942 led to no increase of 3-HP production, suggesting CO2 fixation may not be a rate-limiting step for 3-HP biosynthesis in Synechocystis.  相似文献   

3.
《Process Biochemistry》2014,49(12):2071-2077
Lactate is an important industrial material with numerous potential applications, and its production from carbon dioxide is very attractive. d-Lactate is an essential monomer for production of thermostable polylactide. The photoautotrophic prokaryote cyanobacterium Synechocystis sp. PCC 6803 represents a promising host for biosynthesis of d-lactate from CO2 as it only contains d-lactate dehydrogenase. The production of d-lactate from CO2 by an engineered strain of Synechocystis sp. PCC 6803 with overexpressing d-lactate dehydrogenase and a soluble transhydrogenase has been reported recently. Here, we report an alternative engineering strategy to produce d-lactate from CO2. This strategy involves blocking two competitive pathways, the native poly-3-hydroxybutyrate and acetate pathways from the acetyl-CoA node, and introducing a more efficient d-lactate dehydrogenase into Synechocystis sp. PCC 6803. The engineered strain of Synechocystis sp. PCC 6803 was capable of producing 1.06 g/L of d-lactate from CO2. This alternative strategy for the production of optically pure d-lactate could also be used to produce other acetyl-CoA-derived chemicals from CO2 by using engineered cyanobacteria.  相似文献   

4.
Formate, a simple one-carbon compound, is readily metabolized in plant tissues. In greening potato tubers, similar to some procaryotes, formate is directly synthesized via a ferredoxin-dependent fixation of CO2, serving as the main precursor for carbon skeletons in biosynthetic pathways. In other plant species and tissues, formate appears as a side-product of photorespiration and of fermentation pathways, but possibly also as a product of direct CO2 reduction in chloroplasts. Formate metabolism is closely related to serine synthesis and to all subsequent reactions originating from serine. Formate may have a role in biosynthesis of numerous compounds, in energetic metabolism and in signal transduction pathways related to stress response. This review summarizes the current state of formate research, physiological/biochemical and molecular aspects.  相似文献   

5.
Designing synthetic pathways for efficient CO2 fixation and conversion is essential for sustainable chemical production. Here we have designed a synthetic acetate‐acetyl‐CoA/malonyl‐CoA (AAM) bypass to overcome an enzymatic activity of pyruvate dehydrogenase complex. This synthetic pathway utilizes acetate assimilation and carbon rearrangements using a methyl malonyl‐CoA carboxyltransferase. We demonstrated direct conversion of CO2 into acetyl‐CoA‐derived acetone as an example in photosynthetic Synechococcus elongatus PCC 7942 by increasing the acetyl‐CoA pools. The engineered cyanobacterial strain with the AAM‐bypass produced 0.41 g/L of acetone at 0.71 m/day of molar productivity. This work clearly shows that the synthetic pyruvate dehydrogenase bypass (AAM‐bypass) is a key factor for the high‐level production of an acetyl‐CoA‐derived chemical in photosynthetic organisms.  相似文献   

6.
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.  相似文献   

7.

For thousands of years, crop production has almost entirely depended on conventional agriculture. However, the reality is changing. The ever-growing population, global climate change, soil degradation and biotic/abiotic stresses are a growing threat to food production and security. Thus, sustainable alternatives to increase crop production for a population projected to reach 9.8 billion by 2050 are a major priority. In addition to vertical and soilless farming, innovative products based on bioresources, including plant growth stimulants, have been a target for sustainable food production. Such solutions have led to the exploitation of microorganisms, including microalgae and cyanobacteria as potential bioresources for food and plant biostimulant products. Microalgae (eukaryotic) and cyanobacteria (prokaryotic) are photosynthetic microorganisms with the capacity to synthesize a vast array of bioactive metabolites from atmospheric CO2 and inorganic nutrients. The present review outlines the nutritional value of microalgae and cyanobacteria as alternative food resources. The potential aspects of microalgae and cyanobacteria as stabilizers of the net change in soil organic carbon (C) levels for reduced farmland degradation are also highlighted. The applications of microalgae and cyanobacteria as remedies for improved soil structure and fertility, and as enhancers of crop productivity and abiotic stress tolerance in agricultural settings are outlined. This review also discusses the co-cultivation of crops with microalgae or cyanobacteria in hydroponic systems to favor optimum root CO2/O2 levels for optimized crop production.

  相似文献   

8.
Uptake and utilization of inorganic carbon by cyanobacteria   总被引:5,自引:0,他引:5  
In the cyanobacteria, mechanisms exist that allow photosynthetic CO2 reduction to proceed efficiently even at very low levels of inorganic carbon. These inducible, active transport mechanisms enable the cyanobacteria to accumulate large internal concentrations of inorganic carbon that may be up to 1000-fold higher than the external concentration. As a result, the external concentration of inorganic carbon required to saturate cyanobacterial photosynthesis in vivo is orders of magnitude lower than that required to saturate the principal enzyme (ribulose bisphosphate carboxylase) involved in the fixation reactions. Since CO2 is the substrate for carbon fixation, the cyanobacteria somehow perform the neat trick of concentrating this small, membrane permeable molecule at the site of CO2 fixation. In this review, we will describe the biochemical and physiological experiments that have outlined the phenomenon of inorganic carbon accumulation, relate more recent genetic and molecular biological observations that attempt to define the constituents involved in this process, and discuss a speculative theory that suggests a unified view of inorganic carbon utilization by the cyanobacteria.Abbreviations Ci Inorganic carbon - H-cells Cells grown under high CO2 - L-cells Cells grown under low CO2 - RuBP Ribulose-1,5-bisphosphate - WT Wild type  相似文献   

9.
Carboxylases are among the most important enzymes in the biosphere, because they catalyze a key reaction in the global carbon cycle: the fixation of inorganic carbon (CO2). This minireview discusses the physiological roles of carboxylases in different microbial pathways that range from autotrophy, carbon assimilation, and anaplerosis to biosynthetic and redox-balancing functions. In addition, the current and possible future uses of carboxylation reactions in synthetic biology are discussed. Such uses include the possible transformation of the greenhouse gas carbon dioxide into value-added compounds and the production of novel antibiotics.  相似文献   

10.
The cellular and molecular organization of the CO2-concentrating mechanism (CCM) of cyanobacteria is reviewed. The primary processes of uptake, translocation, and accumulation of inorganic carbon (Ci) near the active site of carbon assimilation by the enzyme ribulose-1,5-bisphosphate carboxylase in the C3 cycle in cyanobacteria are described as one of the specialized forms of CO2 concentration which occurs in some photoautotrophic cells. The existence of this form of CO2 concentration expands our understanding of photosynthetic Ci assimilation. The means of supplying Ci to the C3 cycle in cyanobacteria is not by simple diffusion into the cell, but it is the result of coordinated functions of high-affinity systems for the uptake of CO2 and bicarbonate, as well as intracellular CO2/HCO3 ? interconversions by carbonic anhydrases. These biochemical events are under genetic control, and they serve to maintain cellular homeostasis and adaptation to CO2 limitation. Here we describe the organization of the CCM in cyanobacteria with a special focus on the CCM of relict halo- and alkaliphilic cyanobacteria of soda lakes. We also assess the role of the CCM at the levels of the organism, the biosphere, and evolution.  相似文献   

11.
Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry‐relevant chemicals from CO2. However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP‐driven malonyl‐CoA synthesis pathway and heterologous phosphoketolase (PHK)‐phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl‐CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl‐CoA‐derived biochemicals.  相似文献   

12.
‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long‐term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air‐sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air‐sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air‐sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near‐shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2.  相似文献   

13.
Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.  相似文献   

14.
Recycling of carbon dioxide (CO2) into fuels and chemicals is a potential approach to reduce CO2 emission and fossil-fuel consumption. Autotrophic microbes can utilize energy from light, hydrogen, or sulfur to assimilate atmospheric CO2 into organic compounds at ambient temperature and pressure. This provides a feasible way for biological production of fuels and chemicals from CO2 under normal conditions. Recently great progress has been made in this research area, and dozens of CO2-derived fuels and chemicals have been reported to be synthesized by autotrophic microbes. This is accompanied by investigations into natural CO2-fixation pathways and the rapid development of new technologies in synthetic biology. This review first summarizes the six natural CO2-fixation pathways reported to date, followed by an overview of recent progress in the design and engineering of CO2-fixation pathways as well as energy supply patterns using the concept and tools of synthetic biology. Finally, we will discuss future prospects in biological fixation of CO2.  相似文献   

15.
Butanediols are widely used in the synthesis of polymers, specialty chemicals and important chemical intermediates. Optically pure R-form of 1,3-butanediol (1,3-BDO) is required for the synthesis of several industrial compounds and as a key intermediate of β-lactam antibiotic production. The (R)-1,3-BDO can only be produced by application of a biocatalytic process. Cupriavidus necator H16 is an established production host for biosynthesis of biodegradable polymer poly-3-hydroxybutryate (PHB) via acetyl-CoA intermediate. Therefore, the utilisation of acetyl-CoA or its upstream precursors offers a promising strategy for engineering biosynthesis of value-added products such as (R)-1,3-BDO in this bacterium. Notably, C. necator H16 is known for its natural capacity to fix carbon dioxide (CO2) using hydrogen as an electron donor. Here, we report engineering of this facultative lithoautotrophic bacterium for heterotrophic and autotrophic production of (R)-1,3-BDO. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent biosynthetic pathways in combination with abolishing PHB biosynthesis and reducing flux through the tricarboxylic acid cycle enabled to engineer strain, which produced 2.97 g/L of (R)-1,3-BDO and achieved production rate of nearly 0.4 Cmol Cmol−1 h−1 autotrophically. This is first report of (R)-1,3-BDO production from CO2.  相似文献   

16.
17.
With the ability to recycle CO2 into value-added chemicals, cyanobacteria have been considered as renewable microbial cell factories. Astaxanthin, a highly valued carotenoid with potent antioxidant activity, could be beneficial to human health. Astaxanthin biosynthesis in engineered chassis has been achieved previously, but it generated a relatively low yield. Here, we successfully constructed a highly efficient astaxanthin biosynthetic pathway in cyanobacterium Synechocystis sp. PCC 6803, and achieved more than a 500-fold increase in astaxanthin production via stepwise reconstruction of the biosynthetic pathway and rational rewiring of the endogenous metabolism. The engineered strain produced up to 29.6 mg/g of astaxanthin (dry cell weight), which is the highest yield reported in the engineered chassis to date. Moreover, multi-omics analyses revealed that establishing a high astaxanthin flux may enhance photosynthesis and central metabolism in the engineered strain to compensate for the depleted pigments, which could be valuable for astaxanthin overproduction. This study presents a novel alternative for high-efficiency biosynthesis of astaxanthin directly from CO2.  相似文献   

18.
19.
20.
A vital goal of renewable technology is the capture and re-energizing of exhausted CO2 into usable carbon products. Cyanobacteria fix CO2 more efficiently than plants, and can be engineered to produce carbon feedstocks useful for making plastics, solvents, and medicines. However, fitness of this technology in the economy is threatened by low yields in engineered strains. Robust engineering of photosynthetic microorganisms is lagging behind model microorganisms that rely on energetic carbon, such as Escherichia coli, due in part to slower growth rates and increased metabolic complexity. In this work we show that protein expression from characterized parts is unpredictable in Synechococcus elongatus sp. strain PCC 7942, and may contribute to slow development. To overcome this, we apply a combinatorial approach and show that modulation of the 5'-untranslated region (UTR) can produce a range of protein expression sufficient to optimize chemical feedstock production from CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号