首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN) increase the Vmax of the RM.BpuSI cleavage activity with a proportional change in Km, suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca2+, SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca2+, substrate or both) and MTase state (in the presence of SIN and substrate, SIN and product or product alone). Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca2+ and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI.  相似文献   

2.

Background

We previously defined a family of restriction endonucleases (REases) from Thermus sp., which share common biochemical and biophysical features, such as the fusion of both the nuclease and methyltransferase (MTase) activities in a single polypeptide, cleavage at a distance from the recognition site, large molecular size, modulation of activity by S-adenosylmethionine (SAM), and incomplete cleavage of the substrate DNA. Members include related thermophilic REases with five distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI.

Results

TspDTI, TsoI and isoschizomers Tth111II/TthHB27I recognize different, but related sequences: 5'-ATGAA-3', 5'-TARCCA-3' and 5'-CAARCA-3' respectively. Their amino acid sequences are similar, which is unusual among REases of different specificity. To gain insight into this group of REases, TspDTI, the prototype member of the Thermus sp. enzyme family, was cloned and characterized using a recently developed method for partially cleaving REases.

Conclusions

TspDTI, TsoI and isoschizomers Tth111II/TthHB27I are closely related bifunctional enzymes. They comprise a tandem arrangement of Type I-like domains, like other Type IIC enzymes (those with a fusion of a REase and MTase domains), e.g. TspGWI, TaqII and MmeI, but their sequences are only remotely similar to these previously characterized enzymes. The characterization of TspDTI, a prototype member of this group, extends our understanding of sequence-function relationships among multifunctional restriction-modification enzymes.  相似文献   

3.
Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction–modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.  相似文献   

4.
5.
6.
The molecular basis of the interaction of KpnI restriction endonuclease (REase) and the corresponding methyltransferase (MTase) at their cognate recognition sequence is investigated using a range of footprinting techniques. DNase I protection analysis with the REase reveals the protection of a 14–18 bp region encompassing the hexanucleotide recognition sequence. The MTase, in contrast, protects a larger region. KpnI REase contacts two adjacent guanine residues and the single adenine residue in both the strands within the recognition sequence 5′-GGTACC-3′, inferred by dimethylsulfate (DMS) protection, interference and missing nucleotide interference analysis. In contrast, KpnI MTase does not show elaborate base-specific contacts. Ethylation interference analysis also showed the differential interaction of REase and MTase with phosphate groups of three adjacent bases on both strands within the recognition sequence. The single thymine residue within the sequence is hyper- reactive to the permanganate oxidation, consistent with MTase-induced base flipping. The REase on the other hand does not show any major DNA distortion. The results demonstrate that the differences in the molecular interaction pattern of the two proteins at the same recognition sequence reflect the contrasting chemistry of DNA cleavage and methylation catalyzed by these two dissimilar enzymes, working in combination as constituents of a cellular defense strategy.  相似文献   

7.
RlmJ catalyzes the m6A2030 methylation of 23S rRNA during ribosome biogenesis in Escherichia coli. Here, we present crystal structures of RlmJ in apo form, in complex with the cofactor S-adenosyl-methionine and in complex with S-adenosyl-homocysteine plus the substrate analogue adenosine monophosphate (AMP). RlmJ displays a variant of the Rossmann-like methyltransferase (MTase) fold with an inserted helical subdomain. Binding of cofactor and substrate induces a large shift of the N-terminal motif X tail to make it cover the cofactor binding site and trigger active-site changes in motifs IV and VIII. Adenosine monophosphate binds in a partly accommodated state with the target N6 atom 7 Å away from the sulphur of AdoHcy. The active site of RlmJ with motif IV sequence 164DPPY167 is more similar to DNA m6A MTases than to RNA m62A MTases, and structural comparison suggests that RlmJ binds its substrate base similarly to DNA MTases T4Dam and M.TaqI. RlmJ methylates in vitro transcribed 23S rRNA, as well as a minimal substrate corresponding to helix 72, demonstrating independence of previous modifications and tertiary interactions in the RNA substrate. RlmJ displays specificity for adenosine, and mutagenesis experiments demonstrate the critical roles of residues Y4, H6, K18 and D164 in methyl transfer.  相似文献   

8.
9.
The flavivirus methyltransferase (MTase) sequentially methylates the N7 and 2′-O positions of the viral RNA cap (GpppA-RNA → m7GpppA-RNA → m7GpppAm-RNA), using S-adenosyl-l-methionine (AdoMet) as a methyl donor. We report here that sinefungin (SIN), an AdoMet analog, inhibits several flaviviruses through suppression of viral MTase. The crystal structure of West Nile virus MTase in complex with SIN inhibitor at 2.0-Å resolution revealed a flavivirus-conserved hydrophobic pocket located next to the AdoMet-binding site. The pocket is functionally critical in the viral replication and cap methylations. In addition, the N7 methylation efficiency was found to correlate with the viral replication ability. Thus, SIN analogs with modifications that interact with the hydrophobic pocket are potential specific inhibitors of flavivirus MTase.  相似文献   

10.
11.

Background

An industrial approach to protein production demands maximization of cloned gene expression, balanced with the recombinant host’s viability. Expression of toxic genes from thermophiles poses particular difficulties due to high GC content, mRNA secondary structures, rare codon usage and impairing the host’s coding plasmid replication. TaqII belongs to a family of bifunctional enzymes, which are a fusion of the restriction endonuclease (REase) and methyltransferase (MTase) activities in a single polypeptide. The family contains thermostable REases with distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI and a few enzymes found in mesophiles. While not being isoschizomers, the enzymes exhibit amino acid (aa) sequence homologies, having molecular sizes of ~120 kDa share common modular architecture, resemble Type-I enzymes, cleave DNA 11/9 nt from the recognition sites, their activity is affected by S-adenosylmethionine (SAM).

Results

We describe the taqIIRM gene design, cloning and expression of the prototype TaqII. The enzyme amount in natural hosts is extremely low. To improve expression of the taqIIRM gene in Escherichia coli (E. coli), we designed and cloned a fully synthetic, low GC content, low mRNA secondary structure taqIIRM, codon-optimized gene under a bacteriophage lambda (λ) P R promoter. Codon usage based on a modified ‘one amino acid–one codon’ strategy, weighted towards low GC content codons, resulted in approximately 10-fold higher expression of the synthetic gene. 718 codons of total 1105 were changed, comprising 65% of the taqIIRM gene. The reason for we choose a less effective strategy rather than a resulting in high expression yields ‘codon randomization’ strategy, was intentional, sub-optimal TaqII in vivo production, in order to decrease the high ‘toxicity’ of the REase-MTase protein.

Conclusions

Recombinant wt and synthetic taqIIRM gene were cloned and expressed in E. coli. The modified ‘one amino acid–one codon’ method tuned for thermophile-coded genes was applied to obtain overexpression of the ‘toxic’ taqIIRM gene. The method appears suited for industrial production of thermostable ‘toxic’ enzymes in E. coli. This novel variant of the method biased toward increasing a gene’s AT content may provide economic benefits for industrial applications.  相似文献   

12.
13.
We describe two uncommon roles for Zn2+ in enzyme KpnI restriction endonuclease (REase). Among all of the REases studied, KpnI REase is unique in its DNA binding and cleavage characteristics. The enzyme is a poor discriminator of DNA sequences, cleaving DNA in a promiscuous manner in the presence of Mg2+. Unlike most Type II REases, the active site of the enzyme comprises an HNH motif, which can accommodate Mg2+, Mn2+, or Ca2+. Among these metal ions, Mg2+ and Mn2+ induce promiscuous cleavage by the enzyme, whereas Ca2+-bound enzyme exhibits site-specific cleavage. Examination of the sequence of the protein revealed the presence of a zinc finger CCCH motif rarely found in proteins of prokaryotic origin. The zinc binding motif tightly coordinates zinc to provide a rigid structural framework for the enzyme needed for its function. In addition to this structural scaffold, another atom of zinc binds to the active site to induce high fidelity cleavage and suppress the Mg2+- and Mn2+-mediated promiscuous behavior of the enzyme. This is the first demonstration of distinct structural and catalytic roles for zinc in an enzyme, suggesting the distinct origin of KpnI REase.  相似文献   

14.
15.
Y Liu  E J Oakeley  L Sun    J P Jost 《Nucleic acids research》1998,26(4):1038-1045
It has been shown that, during the S-phase of the cell cycle, the mouse DNA methyltransferase (DNA MTase) is targeted to sites of DNA replication by an amino acid sequence (aa 207-455) lying in the N-terminal domain of the enzyme [Leonhardt, H., Page, A. W., Weier, H. U. and Bestor, T. H. (1992) Cell , 71, 865-873]. In this paper it is shown, by using enhanced green fluorescent protein (EGFP) fusions, that other peptide sequences of DNA MTase are also involved in this targeting. The work focuses on a sequence, downstream of the reported targeting sequence (TS), which is homologous to the Polybromo-1 protein. This motif (designated as PBHD) is separated from the reported targeting sequence by a zinc-binding motif [Bestor , T. H. (1992) EMBO J , 11, 2611-2617]. Primed in situ extension using centromeric-specific primers was used to show that both the host DNA MTase and EGFP fusion proteins containing the targeting sequences were localized to centromeric, but not telomeric, regions during late S-phase and mitosis. Also found was that, in approximately 10% of the S-phase cells, the EGFP fusions did not co-localize with the centromeric regions. Mutants containing either, or both, of these targeting sequences could act as dominant negative mutants against the host DNA MTase. EGFP fusion proteins, containing the reported TS (aa 207-455), were targeted to centromeric regions throughout the mitotic stage which lead to the discovery of a similar behavior of the endogenous DNA MTase although the host MTase showed much less intense staining than in S-phase cells. The biological role of the centromeric localization of DNA MTase during mitosis is currently unknown.  相似文献   

16.
The type IIS/IIC restriction endonuclease TspGWI recognizes the sequence 5'-ACGGA-3', cleaving DNA 11/9 nucleotides downstream. Here we show that sinefungin, a cofactor analog of S-adenosyl methionine, induces a unique type of relaxation in DNA recognition specificity. In the presence of sinefungin, TspGWI recognizes and cleaves at least 12 degenerate variants of the original recognition sequence that vary by single base pair changes from the original 5-bp restriction site with only a single degeneracy per variant appearing to be allowed. In addition, sinefungin was found to have a stimulatory effect on cleavage at these nondegenerate TspGWI recognition sites, irrespective of their number or the DNA topology. Interestingly, no fixed "core" could be identified among the new recognition sequences. Theoretically, TspGWI cleaves DNA every 1024 bp, while sinefungin-induced activity cleaves every 78.8 bp, corresponding to a putative 3-bp long recognition site. Thus, the combination of sinefungin and TspGWI represents a novel frequent cutter, next only to CviJI/CviJI*, that should prove useful in DNA cloning methodologies.  相似文献   

17.
18.
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5’-ATCGAT-3’ sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.  相似文献   

19.
Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers’ biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5′-GCAGC(N8/12)-3′ DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-methyltransferases (MTases) and as a result, another putative REase-MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-MTases was detected.  相似文献   

20.
Homing endonucleases typically contain one of four conserved catalytic motifs, and other elements that confer tight DNA binding. I-CreII, which catalyzes homing of the Cr.psbA4 intron, is unusual in containing two potential catalytic motifs, H-N-H and GIY-YIG. Previously, we showed that cleavage by I-CreII leaves ends (2-nt 3′ overhangs) that are characteristic of GIY-YIG endonucleases, yet it has a relaxed metal requirement like H-N-H enzymes. Here we show that I-CreII can bind DNA without an added metal ion, and that it binds as a monomer, akin to GIY-YIG enzymes. Moreover, cleavage of supercoiled DNA, and estimates of strand-specific cleavage rates, suggest that I-CreII uses a sequential cleavage mechanism. Alanine substitution of a number of residues in the GIY-YIG motif, however, did not block cleavage activity, although DNA binding was substantially reduced in several variants. Substitution of conserved histidines in the H-N-H motif resulted in variants that did not promote DNA cleavage, but retained high-affinity DNA binding—thus identifying it as the catalytic motif. Unlike the non-specific H-N-H colicins, however; substitution of the conserved asparagine substantially reduced DNA binding (though not the ability to promote cleavage). These results indicate that, in I-CreII, two catalytic motifs have evolved to play important roles in specific DNA binding. The data also indicate that only the H-N-H motif has retained catalytic ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号