首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background and aims

Condensed tannins, a dominant class of plant secondary metabolites, play potentially important roles in plant-soil feedbacks by influencing the soil microbial community. Effects of condensed tannins on the soil microbial community and activity were examined by a short-term tannin-addition experiment under field and laboratory conditions.

Methods

Condensed tannins were extracted from the leaves of a dominant conifer (Dacrydium gracilis) in a tropical montane forest on Mt. Kinabalu, Borneo. The extracted tannins were added to soils beneath the conifer and a dominant broadleaf (Lithocarpus clementianus) to evaluate the dependence of the response to tannin addition on the initial composition of the soil microbial community.

Results

Enzyme activities in the field tannin-addition treatment were lower than in the deionized-water treatment. Carbon and nitrogen mineralization were also inhibited by tannin-addition. The fungi-to-bacteria ratio after tannin-addition was higher compared with the distilled-water treatment in the laboratory experiment.

Conclusions

Based on our results, we suggest that the higher concentration of condensed tannins in the leaf tissues of Dacrydium than in those of Lithocarpus is a factor influencing the microbial community and activity. This may have influences on subsequent plant performance, which induces plant-soil feedback processes that can control dynamics of the tropical montane forest ecosystem.  相似文献   

2.
Two opposing niche processes have been shown to shape the relationship between ecological traits and species distribution patterns: habitat filtering and competitive exclusion. Habitat filtering is expected to select for similar traits among coexisting species that share similar habitat conditions, whereas competitive exclusion is expected to limit the ecological similarity of coexisting species leading to trait differentiation. Here, we explore how functional traits vary among 19 understory palm species that differ in their distribution across a gradient of soil resource availability in lower montane forest in western Panama. We found evidence that habitat filtering influences species distribution patterns and shifts community-wide and intraspecific trait values. Differences in trait values among sites were more strongly related to soil nutrient availability than to variation in light or rainfall. Soil nutrient availability explained a significant amount of variation in site mean trait values for 4 of 15 functional traits. Site mean values of leaf nitrogen and phosphorus increased 37 and 64%, respectively, leaf carbon:nitrogen decreased 38%, and specific leaf area increased 29% with increasing soil nutrient availability. For Geonoma cuneata, the only species occurring at all sites, leaf phosphorus increased 34% and nitrogen:phosphorus decreased 42% with increasing soil nutrients. In addition to among-site variation, most morphological and leaf nutrient traits differed among coexisting species within sites, suggesting these traits may be important for niche differentiation. Hence, a combination of habitat filtering due to turnover in species composition and intraspecific variation along a soil nutrient gradient and site-specific niche differentiation among co-occurring species influences understory palm community structure in this lower montane forest.  相似文献   

3.
Tropical forest restoration is increasingly seen as an activity that may counteract or reduce biodiversity loss. However, few studies monitor fauna or consider measures of functional diversity to assess restoration success. We assessed the effect of a tropical montane forest restoration program on species and functional diversity, using amphibians as the target group. We compared amphibian assemblages in three types of land use: restoration areas, tropical montane cloud forest (TMCF; reference ecosystem) and cattle pastures (degraded ecosystem) in southern Mexico. We also described microclimate, microhabitat heterogeneity, woody vegetation structure and diversity for each type of land use, and their relationship to amphibian species and functional diversity. Compared to TMCF, restoration areas had similar environmental conditions. However, amphibian species richness was similar in the three types of land use and abundance was lower in the restoration areas. In TMCF, the amphibian assemblage was dominated by forest-specialist species, the pastures by generalist species, and the restoration areas by a combination of both species types. Interestingly, functional richness, functional evenness and functional divergence did not vary with land use, though the number of functional groups in restoration areas and TMCF was slightly higher. Overall, the results suggest that after seven years, active restoration provided habitat heterogeneity and recovered woody vegetation capable of maintaining amphibian species and functional groups similar to those inhabiting TMCF. Forest fragments adjacent to restoration areas seem to facilitate fauna recolonization and this emphasizes the importance of the conservation of the reference ecosystems to achieving restoration success.  相似文献   

4.
We investigated the role of carbon, nitrogen and phosphorus as limiting factors of microorganisms and microbial grazers (testate amoebae) in a montane tropical rain forest in southern Ecuador. Carbon (as glucose), nitrogen (as NH4NO3) and phosphorus (as NaH2PO4) were added separately and in combination bimonthly to experimental plots for 20 months. By adding glucose and nutrients we expected to increase the growth of microorganisms as the major food resource of testate amoebae. The response of microorganisms to experimental treatments was determined by analysing microbial biomass (SIR), fungal biomass and microbial community composition as measured by phospholipid fatty acids (PLFAs). We hypothesized that the response of testate amoebae is closely linked to that of microorganisms. Carbon addition strongly increased ergosterol concentration and, less pronounced, the amount of linoleic acid as fungal biomarker, suggesting that saprotrophic fungi are limited by carbon. Microbial biomass and ergosterol concentrations reached a maximum in the combined treatment with C, N and P indicating that both N and P also were in short supply. In contrast to saprotrophic fungi and microorganisms in total, testate amoebae suffered from the addition of C and reached maximum density by the addition of N. The results indicate that saprotrophic fungi in tropical montane rain forests are mainly limited by carbon whereas gram positive and negative bacteria benefit from increased availability of P. Testate amoebae suffered from increased dominance of saprotrophic fungi in glucose treatments but benefited from increased supply of N. The results show that testate amoebae of tropical montane rain forests are controlled by bottom–up forces relying on specific food resources rather than the amount of bacterial biomass with saprotrophic fungi functioning as major antagonists. Compared to temperate systems microbial food webs in tropical forests therefore may be much more complex than previously assumed with trophic links being rather specific and antagonistic interactions overriding trophic interactions.  相似文献   

5.
Nutrient cycling and biomass characteristics of a tropical palm forest dominated byOrbignya cohune were found to be different from thsoe of hardwood dominated forests. The cohune palm forest had a high proportion of biomass in leaves (5%), a reduced sapling layer, a large amount of standing forest litter and an exceptionally low decomposition rate factor (0.1 year–1). Mineral concentrations in palm leaves were generally lower than in hardwood species with the exception of Na, which was exceptionally high inOrbignya cohune. Biomass was estimated at 226 tons ha–1 containing 1173 kg ha–1 N; 126 kg ha–1 P; 437 kg ha–1 K; 1869 kg ha–1 Mg; 125 kg ha–1 Ca, and 2177 kg ha–1 Na. Soils of cohune association did not differ significantly from those of neighbouring hardwood dominated associations with the exception of Na which occurred in higher concentration because of bioaccumulation in the dominant. The results suggest that the growth habits and physiology of a dominant can strongly influence some of the ecological parameters used to describe aforest association.  相似文献   

6.
7.
Effects of N sources (ammonium, nitrate and ammonitrate) and VA mycorrhizae (Glomus intraradices) on rhizosphere soil characteristics (pH, exchangeable acidity, exchangeable cations, inorganic N concentrations) growth and nutrient acquisition of coffee seedlings (Coffea arabica L. cv guatemala) were investigated in a pot study with an acid soil (Red Bluff Loam) sterilized by autoclaving. Ammonium addition decreased rhizosphere pH while nitrate and ammonitrate additions both increased rhizosphere pH. Mycorrhizae induced a higher pH, a lower exchangeable acidity and higher values of exchangeable cations in the rhizosphere. Ammonium addition resulted in a lower mycorrhizal infection than the two other N sources. Mycorrhizal plants grew better and accumulated more N, Ca and Mg than non-mycorrhizal plants.  相似文献   

8.
The breeding systems, reproductive efficacies and population densities of 75 species of trees, shrubs, perennial herbs and vines in a montane tropical cloud forest in Venezuela are investigated. 56.96% and 44.32% of the trees, versus the other life forms considered, respectively possess obligate outbreeding mechanisms. Two shrubs are non-pseudogamous apomicts. The percentage of dioecy among tree species (31%) is among the highest recorded in tropical forests. Reproductive efficacy is similar under all breeding systems in the forest interior. Obligately outbred taxa are slower recolonizers of a disturbed border as compared with non-obligate outbreeders. Explanations are advanced for the high incidence of dioecy combined with a low level of self-incompatibility among hermaphroditic species. It is concluded that the breeding system spectrum reflects an unpredictable pollination pattern, rather than insufficient pollinator servicing.  相似文献   

9.
Multi‐year studies comparing changes in litterfall biomass and nutrient inputs in sites under different restoration practices are lacking. We evaluated litterfall dynamics and nutrient inputs at 5 yr and after a decade of recovery in four treatments (natural regeneration—no planting, plantation—entire area planted, tree islands—planting in patches, and reference forest) at multiple sites in an agricultural landscape in southern Costa Rica. We inter‐planted two native species (Terminalia amazonia and Vochysia guatemalensis) and two naturalized N‐fixing species (Inga edulis and Erythrina poeppigiana) in plantation and island treatments. Although litterfall N was higher in plantations in the first sampling period, litter production and overall inputs of C, N, Ca, Mg, P, Cu, Mn, and Fe did not differ between island, plantation, or reference forest after a decade; however, all were greater than in natural regeneration. Potassium inputs were lower in the natural regeneration, intermediate in island and plantation, and greater in reference forest. The percentage of litterfall comprised by the N‐fixing planted species declined by nearly two‐thirds in both plantations and islands between sampling periods, while the percentage of V. guatemalensis more than doubled, and the percentage from naturally regenerated species increased from 27 to 47 percent in islands. Island and plantation treatments were equally effective at restoring litterfall and nutrient inputs to levels similar to the reference system. The nutrient input changed substantially over the 7‐yr interval between measurements, reflecting shifts in vegetation composition and demonstrating how rapidly nutrient cycling dynamics can change in recovering forests.  相似文献   

10.
Abstract. Short-lived components in a dry tropical forest ecosystem in India - tree foliage, fine roots and herbaceous plants - are shown to be important for biomass production and nutrient cycling. With 62 % they contribute much more to the dry matter production than the long-lived components- tree boles, branches and coarse roots - which make up only 38 %. The contribution of short-lived components to the total uptake of different nutrients was also high: 18 - 30 % for tree foliage, 26 - 34 % for fine roots and 6–19 % for herbs; their share in the total nutrient storage is less: 6–19 % for tree foliage, 4–8 % for fine roots and 0.6–1.3 % for herbs. The transfer of nutrients by the short-lived components was also substantial: 31 - 46 % for foliage, 7–24% for herbs and 33–45% for fine roots. The results indicate that the short-lived components play a significant role in the functioning of a dry tropical forest.  相似文献   

11.
12.
13.
We describe chimpanzee seed dispersal in the tropical montane forest of Nyungwe National Park (NNP), Rwanda, for a total of three years from January 1998 through May 2000 and May 2006 through March 2007. Relatively few studies have examined chimpanzee seed dispersal in montane communities where there are generally fewer fruiting tree species than in lowland forests. Such studies may reveal new insights into chimpanzee seed dispersal behaviors and the role that they play in forest regeneration processes. Chimpanzees are large‐bodied, highly frugivorous, and tend to deposit the seeds of both large‐ and small‐seeded fruits they consume in a viable state. We found that chimpanzees dispersed a total of 37 fruiting species (20 families) in their feces, 35% of which were large‐seeded trees (≥0.5 cm). A single large‐seeded tree, Syzygium guineense, was the only species to be dispersed in both wadges and feces. Based on phenological patterns of the top five large‐seeded tree species found in chimpanzee feces, our results indicate that chimpanzees do not choose fruits based on their availability. There was, however, a positive relationship between the presence of Ekebergia capensis seeds in chimpanzee feces and S. guineense seeds in chimpanzee wadges and their respective fruit availabilities. Our data reveal that proportionately fewer chimpanzee fecal samples at NNP contained seeds than that reported in two other communities in the Albertine Rift including one at mid‐elevation and one in montane forest. As in other chimpanzee communities, seeds of Ficus spp. were the most common genus in NNP chimpanzee feces. Our data do not support previous studies that describe Ficus spp. as a fallback food for chimpanzees and highlights an intriguing relationship between chimpanzees and the large‐seeded tree species, S. guineense. Am. J. Primatol. 71:901–911, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Land use changes have resulted in large environmental impacts, and in agricultural landscapes sometimes only forest fragments remain. Riparian forest remnants can positively influence stream water quality, and serve as refuges for aquatic species. We evaluated whether the presence of a riparian forest remnant influenced the structure and composition of macroinvertebrate communities in a rural stream in southeastern Brazil. We sampled three reaches upstream (within abandoned sugarcane cultivation) and nine downstream the remnant edge, until 600 m inside the forested area, using leaf litter bags. The abundances of Elmidae, Chironomidae, and total macroinvertebrates increased along the forest remnant, whereas the abundance of Baetidae, proportion of Ephemeroptera, Plecoptera, and Trichoptera (EPT), rarefied taxonomic richness, and diversity decreased. Taxon richness and EPT abundance did not vary along the forest remnant. Increases in Chironomidae and total abundance within the forest remnant can be related to moderate increases in nutrient concentrations, or to the availability of high quality leaf litter patches. Forest remnants can influence macroinvertebrate communities, although variation both in temperate and tropical studies can be related to local agricultural practices and land use at the watershed scale. Forest remnants are important in maintaining stream water quality in rural landscapes, and deserve attention in watershed management projects.  相似文献   

15.
As a preliminary to studies on biogeochemistry of a tropical montane rain forest at about 1800 m altitude in Sri Lanka, the concentrations of 17 chemical elements in different forest compartments, i.e. in leaves of six floristically dominant tree species, undergrowth, litter, and soil at 0–10 cm and 11–60 cm depth were determined. Foliar chemical differences between species were large. Mean leaf water content, mean leaf area per leaf, and specific leaf weight of each species were also determined. Calcium seems to be used in relatively large quantities by these plants. Phosphorus concentration in all compartments was consistently low. A few species investigated appeared to concentrate aluminium and silicon at high amounts. Concentration differences between compartments were significant only for certain elements. Location effect on the concentrations in soil was considerable for most of the elements studied. When studying plant-soil chemical interactions in these forests, species-level concentrations must be taken into account as the species-specific chemical differences are obscured when treated as canopy leaves.  相似文献   

16.
热带山地常绿林和热带山顶矮林均属于热带云雾林.为了揭示其群落结构和物种多样性特征,在海南岛霸王岭热带山地常绿林和热带山顶矮林分别设置8个和10个2,500 m2样方,调查所有DBH≥1cm的乔木、灌木和藤本植株.结果显示:(1)热带山地常绿林幼树(1cm≤DBH<5 cm)和小树(5cm≤DBH< 10 cm)的平均密...  相似文献   

17.
18.
Phosphorus cycling in a Mexican tropical dry forest ecosystem   总被引:10,自引:4,他引:6  
The study was conducted in five contiguous small watersheds (12–28 ha) gauged for long-term ecosystem research. Five 80 × 30 m plots were used for the study. We quantified inputs from the atmosphere, dissolved and particulate-bound losses, throughfall and litterfall fluxes, standing crop litter and soil available P pools. Mean P input and output for a six-year period was 0.16 and 0.06 kgha–1yr–1, respectively. Phosphorus concentration increased as rainfall moved through the canopy. Annual P returns in litterfall (3.88 kg/ha) represented more than 90% of the total aboveground nutrient return to the forest floor. Phosphorus concentration in standing litter (0.08%) was lower than that in litterfall (0.11%). Phosphorus content in the litterfall was higher at Chamela than at other tropical dry forests. Mean residence time on the forest floor was 1.2 yr for P and 1.3 yr for organic matter. Together these results suggest that the forest at Chamela may not be limited by P availability and suggest a balance between P immobilization and uptake. Comparison of P losses in stream water with input rates from the atmosphere for the six-year period showed that inputs were higher than outputs. Balances calculated for a wet and a dry year indicated a small P accumulation in both years.  相似文献   

19.
Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July 1997 following a 7‐year continuous fertilization. We found that although there was no significant difference in total SOC in the top 0–10 cm of the soils between the fertilization plots (5.42±0.18 kg m?2) and the control plots (5.27±0.22 kg m?2), the proportion of the heavy‐fraction organic C in the total SOC was significantly higher in the fertilized plots (59%) than in the control plots (46%) (P<0.05). The annual decomposition rate of fertilized leaf litter was 13% higher than that of the control leaf litter. We also found that fertilization significantly increased microbial biomass (fungi+bacteria) with 952±48 mg kg?1soil in the fertilized plots and 755±37 mg kg?1soil in the control plots. Our results suggest that fertilization in tropical forests may enhance long‐term C sequestration in the soils of tropical wet forests.  相似文献   

20.
Passive restoration methods offer great promise for tropical regions where resources are limited but the success of such efforts can be variable. Using trait-based theory, we investigated the likely trajectories of passive restoration efforts in a degraded Nigerian montane forest system recently protected from burning and cattle grazing. We quantified the density, species richness, and functional trait dispersion of dispersed seeds and seedling communities at increasing distances from the forest edge. We then determined which plant traits are responsible for colonisation by quantifying changes in functional-trait dispersion and relative frequencies of dispersal-linked traits with increasing distance from the forest. We found a rapid decrease in density and species richness, and significant species turnover in both seeds and seedlings just beyond the forest edge. This was mirrored by a significant decline in functional-trait dispersion and a shift in the relative frequencies of dispersal-linked traits. These findings suggest that the reassembly of plant communities adjacent to remnant forest is dependent on functional traits present in these remnant source populations, providing support for the incorporation of trait-based theory in restoration management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号