首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinetic constants in the functioning of eIF-2 and eIF-2B   总被引:1,自引:0,他引:1  
Minimum rate constants for reactions catalysed by the eukaryotic initiation factor eIF-2B in promoting formation of the ternary complex eIF-2.GTP.met-tRNAi from eIF-2.GDP are estimated from published data. The most plausible sequence of reactions in vivo is when eIF-2B remains bound to eIF-2.GTP.met-tRNA. Rate constants for reaction of eIF-2B and eIF-2.GDP are too large for protein:protein interactions at cellular concentrations in free solution. This finding suggests some form of sequestration of eIF-2 and eIF-2B in the cell to facilitate interaction, which may result in only a portion of cellular eIF-2 being actively engaged in initiation.  相似文献   

2.
eIF-2B and the exchange of guanine nucleotides bound to eIF-2   总被引:1,自引:0,他引:1  
Available data for the formation of the ternary complex eIF-2 X GTP X methionyl-tRNAi involved in eukaryotic initiation and of the inhibition of ternary complex formation by GDP have been examined with a view to determining the mechanism by which eIF-2B facilitates nucleotide exchange. Two mechanisms have been considered--first a displacement reaction in which eIF-2B displaces GDP and GTP in a manner analogous to a "ping-pong" enzyme mechanism, and secondly the possibility that binding of eIF-2B to eIF-2 nucleotide complexes enhances the rate of nucleotide exchange without itself inducing nucleotide displacement. Comparison has been made between the properties of eIF-2 and eIF-2B and of the bacterial elongation factors Tu and Ts. It seems most probable that, as previously suggested by others for Ts, eIF-2B effectively catalyses an exchange reaction through a "ping-pong" type mechanism. Possible explanations of data suggesting otherwise are put forward. Both eIF-2 and bacterial Tu are complex allosteric proteins subject to a variety of influences which in the case of eIF-2 include phosphorylation of the alpha subunit. This phosphorylation appears to change the equilibria in the reaction mechanism such that the transferred entity (eIF-2) becomes firmly bound to the catalyst (eIF-2B). Minimum rate constants for the formation of eIF-2 X eIF-2B from eIF-2 X GDP and eIF-2 X GTP and reverse reactions are derived. These values suggest that the initiation factors are likely to have to operate in a restricted environment if rates of protein synthesis seen in vivo are to be sustained.  相似文献   

3.
Rate constants calculated previously by the author (Biochem. Int. 22, 523-533:1990) for the reactions catalysed by eIF-2B (GEF) in which free GDP exchanges with GDP bound to eIF-2 have been re-evaluated using the computational procedures developed by Chau et al. (J. Biol. Chem. 256, 5591-5596:1981) for the analogous reactions catalysed by EF-Ts. Modification of the equations used by Chau et al. emphasises the interrelationships of the rate constants for the binding of GDP and of EF-Ts (eIF-2B) to the ternary complex EF-Ts.EF-Tu.GDP (eIF-2B.eIF-2.GDP). The modification leads to some revision of the previously published values for the rate constants involved in the action of EF-Ts as put forward by Chau et al. as well as for those involved in the action of eIF-2B.  相似文献   

4.
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed.  相似文献   

5.
Published data dealing with the formation of the ternary complex eIF-2 X GTP X met-tRNAi involved in eukaryotic initiation have been evaluated to calculate the expected inhibition by GDP and the role of eIF-2B in limiting this inhibition. It is concluded that cellular levels of GDP are unlikely seriously to inhibit ternary complex formation if the reaction can proceed to equilibrium. However, derivation of 'on' and 'off' rates for the interaction of GTP and GDP with eIF-2 demonstrates that these are too slow in the absence of eIF-2B to support active protein synthesis, particularly if eIF-2 is released from ribosomes as eIF-2 X GDP. Whilst eIF-2 X GDP and eIF-2 X GTP appear to dissociate equally slowly, it is concluded that GDP binds to eIF-2 100-times faster than GTP. Addition of eIF-2B has the effect of raising k-1 for both GDP and GTP several hundred-fold and k+1 50- and 7000-fold, respectively. Thus, a kinetic block can be relieved even if there is no change in the thermodynamic state. Phosphorylation of the alpha-subunit of eIF-2 appears to affect only those parameters influenced by eIF-2B. The reported rescue of inhibited lysates by addition of 1 mM GTP is not by mass action but by some other mechanism. Consideration of the kinetic parameters favours the formation of a ternary complex of eIF-2 X eIF-2B X GDP en route to eIF-2 X GTP as opposed to displacement of GDP from eIF-2 X GDP by eIF-2B.  相似文献   

6.
The influence of changing concentrations of GDP, methionyl-tRNAi, eIF-2 and eIF-2B on possible rates of initiation of protein synthesis have been explored in calculations based on previously derived rate constants for interaction of the components involved in formation of ternary or quaternary complexes of eIF-2B, eIF-2, GTP and Met-tRNAi. When allowance is made for the limitation of diffusional coefficients imposed on macromolecules by the intracellular milieu it is apparent that recent estimates by Rowlands et al. (Eur. J. Biochem. 175, 93:1988) of higher concentrations of eIF-2 and eIF-2B in cells than hitherto proposed become necessary to support known rates of initiation. Under these conditions changing concentrations of met-tRNAi as proposed by Cooper and Braverman (J. Biol. Chem. 256, 7461:1981) are likely to have an important regulating influence.  相似文献   

7.
The conversion of eIF-2.GDP to eIF-2.GTP by eIF-2B requires Met-tRNA(fMet).   总被引:1,自引:0,他引:1  
We have investigated why the recycling of eIF-2.GDP to eIF-2.GTP, mediated by the guanine nucleotide exchange factor eIF-2B, is rapid in rabbit reticulocyte lysate, reconstituted for optimal protein synthesis, but slow in an isolated reaction with purified eIF-2B. We have found that purified eIF-2B dissociates eIF-2.[3H]GDP as efficiently in the presence of GTP as it does in the presence of GDP provided Met-tRNA(fMet) is added. tRNA(fMet) is ineffective, and there is no Met-tRNA(fMet) requirement for exchange with GDP. Exchange of eIF-2 bound GDP for GTP is completely dependent upon Met-tRNA(fMet) in the presence of ATP, suggesting that under physiological conditions efficient recycling of eIF-2.GDP to eIF-2.GTP requires conversion of the latter, a relatively unstable complex, to a more stable Met-tRNA(fMet).eIF-2.GTP complex.  相似文献   

8.
T F Sarre 《Bio Systems》1989,22(4):311-325
In eukaryotic cells, protein biosynthesis is controlled at the level of polypeptide chain initiation. During the initiation process, eukaryotic initiation factor 2 (eIF-2) catalyzes the binding of Met-tRNAf and GTP to the 40S ribosomal subunit. In a later step, eIF-2 is released from the ribosomal initiation complex, most likely as an eIF-2.GDP complex, and another initiation factor termed eIF-2B is necessary to recycle eIF-2 by displacing GDP by GTP. In rabbit reticulocytes, inhibition of protein synthesis is accompanied by the phosphorylation of the alpha-subunit of eIF-2, a process that does not render eIF-2 inactive, but prevents it from being recycled by eIF-2B. First described in rabbit reticulocytes as inhibitors of translation, two distinct eIF-2 alpha kinases are known: the haemin-controlled kinase (termed HCI) and the double-stranded RNA-activated kinase (termed DAI). eIF-2 alpha phosphorylation appears to be a reversible control mechanism since corresponding phosphatases have been described. Recent reports indicate a correlation between eIF-2 alpha phosphorylation and the inhibition of protein synthesis in several mammalian cell types under a range of physiological conditions. In this review, the physical and functional features of the known eIF-2 alpha kinases are described with respect to their role in mammalian cells and the mode of activation by cellular signals. Furthermore, the possible impact of the eIF-2/eIF-2B ratio and of the subcellular compartmentation of these factors (and the eIF-2 alpha kinases) on mammalian protein synthesis is discussed.  相似文献   

9.
The characteristics of yeast eukaryotic initiation factor 2 (eIF-2) and Co-eIF-2A have been studied and compared with those of the corresponding factors from rabbit reticulocytes. 1) Unlike eIF-2r, purified eIF-2y did not contain bound GDP. 2) Purified eIF-2y preparation contained GTPase activity and dephosphorylated GTP to GDP. 3) An anti-eIF-2r preparation which predominantly precipitated the gamma-subunit (Mr 54,000) of eIF-2r also precipitated the larger subunit (Mr 54,000) of eIF-2y. 4) Unlike eIF-2r, ternary complex formation by eIF-2y was not inhibited by Mg2+. 5) Both Co-eIF-2A20y and Co-eIF-2r significantly enhanced Met-tRNAf binding to eIF-2y and, again, Mg2+ did not have any effect on this stimulated Met-tRNAf binding to eIF-2y. 6) Both Co-eIF-2A20y and Co-eIF-2r were similarly effective in stimulating Met-tRNAf binding to eIF-2r in the absence of Mg2+. However, in the presence of Mg2+, Co-eIF-2A20y was significantly less effective than Co-eIF-2r as Co-eIF-2A20y did not promote displacement of GDP from eIF-2r X GDP. 7) eIF-2y bound [3H]GDP and this binding was significantly enhanced in the presence of Mg2+. Also, [3H]GDP in the preformed eIF-2y X [3H]GDP complex was rapidly exchanged with exogenously added unlabeled GDP in the presence of Mg2+. Co-eIF-2A20y had no effect on GDP binding to eIF-2y nor on GDP exchange reactions. 8) Reticulocyte heme-regulated protein synthesis inhibitor, which phosphorylated almost completely (in excess of 80%) the alpha-subunit (Mr 38,000) of eIF-2r, also phosphorylated similarly the smaller subunit (Mr 36,000) of eIF-2y. However, such phosphorylation had no significant effect on ternary complex formation, GDP binding, and GDP exchange reactions.  相似文献   

10.
The rate of initiation of protein synthesis appears to be controlled at the level of recycling of eIF-2. In this process a new factor, designated eRF, plays an important role. The factor has been purified from the post-ribosomal supernatant and has been called formerly anti-HRI and anti-inhibitor [Amesz, H., Goumans, H., Haubrich-Morree, Th., Voorma, H.O., and Benne, R. (1979) Eur. J. Biochem. 98, 513-520]. Its effect on the initiation of protein synthesis has been studied in several assays: a small but distinct effect is found in the assay for the formation of a ternary complex between eIF-2, GTP and Met-tRNA; a 4-5-fold stimulation is obtained in assays for 40S preinitiation complex formation and in the methionyl-puromycin reaction. In the latter assay a catalytic use of eIF-2 occurs provided that eRF is present. eRF forms a complex with eIF-2 which results in a decrease of the affinity of eIF-2 for GDP, giving it the properties of a GDP/GTP exchange factor. The model stresses the catalytic use of eIF-2 in initiation provided that conditions are met for GDP/GTP exchange by a transient complex formation between eIF-2 and eRF. On the other hand, it is shown that phosphorylation of eIF-2 by the hemin-regulated inhibitor (HRI) abolishes the recycling of eIF-2, by the formation of another stable complex comprising eIF-2 alpha P, GDP and eRF.  相似文献   

11.
Protein synthesis in sea urchin eggs is stimulated dramatically upon fertilization. We previously demonstrated that this stimulation is primarily due to an increase in the rate of polypeptide chain initiation which in turn may be regulated at the level of recycling of eukaryotic initiation factor 2 (eIF-2) (Colin, A. M., Brown, B. D., Dholakia, J. N., Woodley, C. L., Wahba, A. J., and Hille, M. B. (1987) Dev. Biol. 123, 354-363). We have now purified eIF-2 from sea urchin Strongylocentrotus purpuratus blastulae to apparent homogeneity by chromatography on DEAE-cellulose, phosphocellulose, Mono Q, Mono P, and Mono S columns. The factor, which differs from mammalian eIF-2, is composed of three non-identical subunits with apparent molecular weights of 40,000-alpha; 47,000-beta, and 58,000-gamma as estimated by sodium dodecyl-polyacrylamide gel electrophoresis. Antibodies raised against rabbit reticulocyte eIF-2 do not cross-react with sea urchin eIF-2. The binding of Met-tRNA(f) to sea urchin eIF-2 is totally dependent on GTP. A 4-fold stimulation in the rate of protein synthesis in unfertilized sea urchin egg extracts is observed by the addition of 1 micrograms of purified eIF-2. The factor also binds GDP to form a binary (eIF-2.GDP) complex which is stable in the presence of Mg2+. GDP binding to sea urchin eIF-2 inhibits ternary (eIF-2-GTP.[35S]Met-tRNA(f) complex formation. The rabbit reticulocyte guanine nucleotide exchange factor (GEF) catalyzes the exchange of GDP bound to sea urchin eIF-2 for GTP and stimulates ternary complex formation. The requirement of GEF for the recycling of eIF-2 suggests that protein synthesis in sea urchins is similar to that in mammalian systems and may also be regulated at the level of GEF activity. The reticulocyte heme-controlled repressor phosphorylates the alpha-subunit of eIF-2 from both sea urchins and rabbit reticulocytes. However, casein kinase II which phosphorylates the beta-subunit of the reticulocyte factor specifically phosphorylates the alpha-subunit of sea urchin eIF-2. In this respect, the sea urchin factor is similar to eIF-2 isolated from other nonmammalian sources. Since both heme controlled repressor and casein kinase II phosphorylate the alpha-subunit of sea urchin eIF-2 caution should be exercised when interpreting the significance of eIF-2(alpha) phosphorylation in sea urchins.  相似文献   

12.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

13.
The ability of eIF-2.GDP in which the alpha subunit of eIF-2 is phosphorylated (eIF-2(alpha P).GDP) to act as a competitive inhibitor of eIF-2B-catalysed exchange of eIF-2-bound GDP has been investigated by modelling data provided by Rowlands et al. (J. Biol. Chem. 263, 5526-5533:1988). Some revision of previously determined dissociation and rate constants proved to be necessary. Under the conditions employed it was not possible to demonstrate significant inhibition of GDP exchange by eIF-2 (alpha P).GDP without substantial increase in its affinity for eIF-2B over that of eIF-2.GDP. Classic double reciprocal plots for competitive inhibition were found only when [eIF-2B] was low in relation to [eIF-2 (alpha P).GDP]. Relatively high cellular [eIF-2B] lessens the inhibitory effect of eIF-2(alpha P).GDP and suggests the possibility of other potential controls of initiation.  相似文献   

14.
We recently reported that the translational control of protein synthesis by glucose 6-phosphate in gel-filtered, rabbit reticulocyte lysate is exerted on the activity of eukaryotic initiation factor (eIF)-2B, the factor that catalyzes the exchange of GTP for GDP bound to eIF-2, by a mechanism that is independent of the phosphorylation of eIF-2 (alpha subunit). We now demonstrate that two other conditions regulate the activity of eIF-2B in rabbit reticulocyte lysate: polyamines (spermidine and spermine) and amino acid deficiency. In the absence of added polyamines, protein synthesis in gel-filtered lysate is reduced to about 70% and eIF-2B activity to about 35% of optimal. The former is likely a result of the latter, since we find that reticulocyte lysate has about twice the eIF-2B necessary to recycle the eIF-2.GDP generated under conditions of optimal protein synthesis. In contrast, the reduction in eIF-2B activity (to about 50% of optimal) occurring in the absence of added amino acids in unfractionated or gel-filtered lysate is insufficient, by itself, to slow the rate of protein synthesis, and the inhibition of protein synthesis that does occur with amino acid deficiency is exerted on polypeptide chain elongation, not initiation. The reduction in eIF-2B activity occurring with amino acid deficiency cannot be reversed by adding more glucose 6-phosphate or polyamines nor can the reduced eIF-2B activity seen with polyamine deficiency be overcome by increasing the glucose 6-phosphate, suggesting that these three components regulate eIF-2B activity by different mechanisms.  相似文献   

15.
Interactions of eukaryotic 5-dimethylaminonaphthalene-1-sulfonyl-initiation factor 2 (eIF-2) from rabbit reticulocytes and the guanine nucleotide exchange factor ( GEF ), Met-tRNAf, GTP, and GDP were monitored by changes in fluorescence anisotropy and radioactive filtration assays. At 1 mM Mg2+, radioactive filtration assays demonstrate that GEF is necessary for nucleotide exchange. We did not observe a GDP dependence in the association reaction of eIF-2 X GEF for GDP concentrations from 0.01 to 20 microM. This is in disagreement with the model: eIF-2 X GDP + GEF in equilibrium eIF-2 X GEF + GDP. The addition of GTP caused a decrease in fluorescence anisotropy which is interpreted as a dissociation of eIF-2 X GEF . We propose an asymmetrical model of ternary complex (eIF-2 X GTP X Met-tRNAf) formation where 1) GDP does not displace GEF and 2) GTP replaces GEF and presumably GDP. For reticulocyte eIF-2, phosphorylation of the alpha subunit greatly inhibits protein synthesis. This inhibition derives neither from failure of GEF to bind to eIF-2(alpha P) nor from greatly enhanced binding of GEF . The inhibition results from the requirement of very high levels of GTP (100 microM) to dissociate the eIF-2(alpha P) X GEF complex.  相似文献   

16.
The rabbit reticulocyte heme-regulated eIF-2 alpha kinase (HRI) utilizes adenosine-5'-0-(3-thiotriphosphate) (ATP-gamma-S) as a substrate for its autophosphorylation and activation, and for the phosphorylation of eIF-2. The phosphorothioated binary complex [eIF-2(alpha-[35S]P) . GDP], interacted with the reticulocyte reversing factor (RF) in in vitro assays, and inhibited the ability of RF to catalyze GDP exchange from (eIF-2 . [3H]GDP) complexes. The phosphorothioate residue in the binary complex was resistant to phosphatase action under protein synthesis conditions. eIF-2(alpha-[35S]P) . GDP inhibited protein synthesis in hemin-supplemented lysates with biphasic kinetics, but had no effect on protein synthesis in heme-deficient lysates. The data reported here indicate that phosphorylation of eIF-2 . GDP alone, through the ability of eIF-2(alpha-P) . GDP to bind and sequester RF, is sufficient to inhibit protein chain initiation in the reticulocyte lysate.  相似文献   

17.
The characteristics of component activities in Co-eIF-2 (where eIF is eukaryotic initiation factor) protein complex have been studied. (i) At limiting concentrations, Co-eIF-2 promoted rapid GDP binding to eIF-2 and also GDP displacement from eIF-2 X GDP during ternary complex formation in the presence of GTP and Mg2+ (Co-eIF-2C activity) but did not significantly stimulate ternary complex formation by eIF-2. (ii) At higher concentrations, Co-eIF-2 significantly enhanced ternary complex formation by eIF-2 and also rendered the complex stable to aurintricarboxylic acid presumably as Co-eIF-2 became physically bound to the ternary complex (Co-eIF-2A activity). (iii) Ternary complex preformed in the presence of Co-eIF-2 and without Mg2+ dissociated upon subsequent addition of Mg2+ (Co-eIF-2B activity). This dissociation reaction was presumably due to loss of interaction of the Co-eIF-2A component in Co-eIF-2 with the ternary complex (reversal of Co-eIF-2A activity) as the complex became increasingly sensitive to aurintricarboxylic acid with increasing Mg2+ concentration. In another study, purified eIF-2 was freed of bound GDP by treatment with alkaline phosphatase and the characteristics of native and GDP-free eIF-2 were compared. (i) One mM Mg2+ inhibited (60%) ternary complex formation by native eIF-2 but not by GDP-free eIF-2. Addition of exogenous GDP rendered GDP-free eIF-2 sensitive to Mg2+ indicating that Mg2+ inhibition is due to eIF-2-bound GDP. (ii) In the presence of Mg2+, Co-eIF-2 stimulated similarly ternary and Met-tRNAf X 40 S X AUG complex formation by both native and GDP-free eIF-2. Such stimulatory activity in each case was strongly inhibited by prior phosphorylation of eIF-2 alpha subunit by heme-regulated translational inhibitor. (iii) Ternary complexes preformed using either native and GDP-free eIF-2 and excess Co-eIF-2A80 in the absence of Mg2+ did not form Met-tRNAf X 40 S X AUG complex. They required trace amounts of Co-eIF-2 for such activity.  相似文献   

18.
Studies on the recycling of eukaryotic initiation factor 2 (eIF-2) during protein synthesis in normal and heme-deficient reticulocyte lysates indicate that eIF-2 binds physiologically to the 60 S ribosomal subunit. Several findings suggest that the 60 S subunit serves as a carrier for eIF-2 during protein synthesis. The addition of purified eIF-2 (beta-32P) to normal hemin-supplemented lysates results in its binding to polyribosomal 60 S subunits; the binding is temperature-dependent. In lysates inhibited by heme deficiency, phosphorylated eIF-2 alpha can be detected on polyribosomal 60 S subunits early in the initial linear phase of protein synthesis; after polyribosomal disaggregation and shut-off of protein synthesis, phosphorylated eIF-2 alpha accumulates on free 60 S ribosome subunits and on the 60 S subunits of 80 S ribosome couples. The phosphorylated eIF-2 alpha associated with the 60 S subunits in heme-deficient lysates appears to be present as the binary complex [eIF-2 (alpha P) X GDP]; the binding of this complex to the 60 S subunit is tight and is not affected by treatment with 25 mM EDTA or by sedimentation in sucrose gradients. Reversal of the inhibition of protein synthesis in heme-deficient lysates by the addition of reversing factor results in a rapid binding of reversing factor to the 60 S subunits and a concomitant dissociation of [eIF-2(alpha P) X GDP]. These findings suggest that the [eIF-2 X GDP] binary complex formed during the assembly of the 80 S initiation complex binds to the 60 S subunit of polyribosomes and is subsequently released by the action of reversing factor.  相似文献   

19.
The formation of 80 S initiation complexes containing labeled viral mRNA was drastically inhibited when mRNA binding assays were carried out with reticulocyte lysate preincubated with double-stranded RNA (dsRNA). When the assays were analyzed by centrifugation on sucrose gradients, the mRNA incubated with lysate pretreated with dsRNA sedimented as a 48 S complex. Met-tRNA, GDP, and phosphorylated initiation factor eIF-2(alpha P) were shown to co-sediment with the 48 S complex. Therefore, the formation of this complex was attributed to the phosphorylation of eIF-2 alpha by a dsRNA-activated protein kinase. These observations suggested that mRNA could bind to a 40 S ribosomal subunit containing Met-tRNAf, GDP, and eIF-2(alpha P), but the joining of a 60 S ribosomal subunit was inhibited. When the 48 S complex was isolated and incubated with lysate without added dsRNA, the mRNA could form 80 S initiation complexes. The shift of mRNA from 48 S to 80 S complexes was also observed when the eIF-2 alpha kinase activity was inhibited by the addition of 2-aminopurine. This shift was quite slow, however, when compared to the rate of binding of free mRNA to 80 S initiation complexes. The 2-aminopurine was effective in reversing the inhibition of protein synthesis by dsRNA and in maintaining a linear rate of protein synthesis for 3 h in lysates. Without added 2-aminopurine, protein synthesis was inhibited after 90 min even in lysates supplemented with hemin and eIF-2(alpha P) was detected in these lysates. This finding indicated that eIF-2 alpha phosphorylation could be in part responsible for limiting the duration of protein synthesis in mammalian cell-free systems.  相似文献   

20.
Previous studies from other laboratories, using rabbit reticulocyte lysate filtered through Sephadex G-25 or G-50, have demonstrated that glucose 6-phosphate is required to maintain active rates of translation, but its mechanism of action is currently unsettled. We have tested whether glucose 6-phosphate is required to prevent activation of the hemin-controlled translational repressor and the phosphorylation of the smallest or alpha subunit of eukaryotic initiation factor 2 (eIF-2). We have found that antibody to the hemin-controlled translational repressor can completely restore protein synthesis in reticulocyte lysate, filtered through Sephadex G-25, that is incubated in the absence of hemin and presence of glucose 6-phosphate, but cannot restore protein synthesis in such lysate incubated in the presence of hemin and absence of glucose 6-phosphate. We have also found, using a modification of the method of Matts and London [1984) J. Biol. Chem. 259, 6708-6711) to measure the ability of gel-filtered lysate to dissociate and exchange GDP from eIF-2.GDP, that this endogenous eIF-2B activity is reduced to the same low level in the presence of hemin and absence of glucose 6-phosphate as it is in the absence of hemin and presence of glucose 6-phosphate. Although there is a low level of phosphorylation of eIF-2 alpha in gel-filtered lysate given hemin but no glucose 6-phosphate, it cannot account for the loss of eIF-2B activity, since this phosphorylation is removed by antibody to the hemin-controlled translational repressor or isocitrate, which do not restore protein synthesis or eIF-2B activity, and not by fructose 1,6-diphosphate, which does partially restore protein synthesis and eIF-2B activity. These findings suggest that sugar phosphates may exert a direct effect on eIF-2B and may be required for its proper function. Additional support for this conclusion is our finding that protein synthesis and eIF-2B activity in partially hemin-deficient lysate can be restored by high levels of glucose 6-phosphate or fructose 1,6-diphosphate without a reduction in the level of phosphorylated eIF-2 alpha, suggesting that such levels of sugar phosphate may permit restoration of normal function with a limiting amount of eIF-2B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号